Trainer.cpp 22.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "Trainer.h"

#include <fenv.h>
#include <stdio.h>

#include <iostream>
#include <iomanip>
#include <sstream>
#include <limits>

#include <google/protobuf/text_format.h>

#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"
L
liaogang 已提交
31
#include "paddle/utils/Excepts.h"
Z
zhangjinchao01 已提交
32 33 34 35 36 37 38 39 40 41 42
#include "paddle/utils/GlobalConstants.h"

#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "paddle/gserver/layers/ValidationLayer.h"
#include "TesterConfig.h"
#include "ThreadParameterUpdater.h"
#include "RemoteParameterUpdater.h"
#include "TrainerConfigHelper.h"

P_DEFINE_string(config, "", "Trainer config file");
43
P_DEFINE_int32(test_period, 0,
Z
zhangjinchao01 已提交
44 45 46 47 48
               "Run test every so many train batches."
               " 0 for testing after each pass."
               " If not 0, test log_period batches."
               " If 0, test on all test data");

49 50 51 52 53 54 55 56 57 58 59 60
P_DEFINE_int32(test_batches_while_training, 0,
               "Run test every so many train batches."
               " 0 for testing after each pass."
               " If not 0, test log_period batches."
               " If 0, test on all test data");

P_DEFINE_int32(test_batches_while_end, 0,
               "Run test every so many train batches."
               " 0 for testing after each pass."
               " If not 0, test log_period batches."
               " If 0, test on all test data");

Z
zhangjinchao01 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
P_DEFINE_bool(local, true, "Train in local mode or not");

P_DEFINE_bool(
    test_all_data_in_one_period, false,
    "true will test all data in one test peroid."
    "Otherwise test (batch_size * log_peroid) data in one test period.");

P_DEFINE_int32(average_test_period, 0,
               "Do test on average parameter every so"
               " many batches. MUST be devided by FLAGS_log_period."
               " Default 0 means do not test average parameter");

P_DEFINE_int32(saving_period, 1, "Save parameteres every so many passes");
P_DEFINE_int64(saving_period_by_batches, 0,
               "Save parameters every so many batches in one pass");
P_DEFINE_string(save_dir, "", "Directory for saving model parameter");
P_DEFINE_int32(start_pass, 0,
               "Start training from this pass. "
               "Will load parameter from the previous pass");
P_DEFINE_int32(test_pass, -1,
               "Will load parameter start from this pass to test");
P_DEFINE_int32(test_wait, 0, "Waiting for pass parameter if not exist");
P_DEFINE_bool(with_cost, true, "enable cost layer or not");
P_DEFINE_bool(distribute_test, false, "test in distribute mode");

P_DEFINE_int32(num_passes, 100, "train for so many passes");

P_DEFINE_string(config_args, "",
                "arguments passed to config file."
                "Format: key1=value1,key2=value2");

P_DEFINE_bool(save_only_one, false,
              "Save only parameters in last pass, remove previous.");

P_DEFINE_string(feat_file, "", "File name of extracted feature.");
P_DEFINE_string(predict_output_dir, "",
                "Directory that saves the predicted results of output layers");
P_DEFINE_string(model_list, "",
                "File that saves the model list when evaluation");

namespace paddle {

void Trainer::init(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);

  auto config = TrainerConfigHelper::createFromFlagConfig();
  feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW);

  init(config);
}

void Trainer::init(const std::shared_ptr<TrainerConfigHelper> &config,
                   bool testing,
                   const std::shared_ptr<GradientMachine> &gradientMachine,
                   const std::shared_ptr<DataProvider> &dataProvider,
                   const std::shared_ptr<DataProvider> &testDataProvider) {
  this->stats_ = std::make_shared<TrainerStats>();

  config_ = config;

  config_->updateConfigFromFlags();

  testing_ = testing;

  // in testing, mode_ may GradientMachine::kTesting or
  // GradientMachine::kSgdSparseCpuTraining

  if (FLAGS_local) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "local and loadsave_parameters_in_pserver can not both true";
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdaterForEachParams();
      LOG(INFO) << "ignore sparse_remote_update=true due to  --local=true";
    }
  }
  if (FLAGS_loadsave_parameters_in_pserver) {
    CHECK(config_->getOptConfig().use_sparse_remote_updater())
        << "no parameter to load from pserver, please check network config";
  }
  if (testing && !FLAGS_loadsave_parameters_in_pserver) {
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdater();
      LOG(INFO) << "because parameter is loaded local,"
                << "tester ignore sparse_remote_update flag";
    }
  }

  CHECK(TrainAlgorithm::isValid(config_->getOptConfig().algorithm()))
      << "invalid algorithm configuration: "
      << config_->getOptConfig().algorithm();

  bool useSparseUpdater = false;
  for (auto& paraConfig : config_->getModelConfig().parameters()) {
    if (paraConfig.sparse_update() || paraConfig.sparse_remote_update()) {
      useSparseUpdater = true;
    }
  }

  if (testing) {
    LOG(INFO) << "trainer: in testing mode";
    if (config_->getOptConfig().use_sparse_remote_updater() ||
        FLAGS_trainer_count > 1) {
      mode_ = GradientMachine::kSgdSparseCpuTraining;
      LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
    } else {
      mode_ = GradientMachine::kTesting;
      LOG(INFO) << "trainer mode: Testing";
    }
  } else if (IGradientMachineMode::tryGetMode(
               (int*)&mode_, config_->getOptConfig().algorithm(),
               FLAGS_trainer_count,
               FLAGS_local, FLAGS_use_gpu)) {
    LOG(INFO) << "Custom trainer mode.";
  } else if ((config_->getOptConfig().algorithm() == TrainAlgorithm::SGD ||
              config_->getOptConfig().algorithm() == TrainAlgorithm::AsyncSGD)
             && useSparseUpdater) {
    mode_ = GradientMachine::kSgdSparseCpuTraining;
    LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
  } else {
    mode_ = GradientMachine::kNormal;
    LOG(INFO) << "trainer mode: Normal";
  }

  // initialize trainer internal
  trainerInternal_.init(config_, gradientMachine,
                        TrainerInternalConfig::createFromMode(mode_),
                        stats_, testing);
  std::unique_ptr<ParameterUtilConfig> paramConfig(
          new ParameterUtilConfig(FLAGS_save_only_one,
                                  FLAGS_saving_period,
                                  FLAGS_loadsave_parameters_in_pserver,
                                  FLAGS_config));

  paramUtil_.reset(
      new paddle::ParameterUtil(
          config_,
          std::move(paramConfig),
          trainerInternal_.getGradientMachine(),
          trainerInternal_.getParameterUpdater()));


  bool gpuData = FLAGS_use_gpu && (!FLAGS_parallel_nn) &&
204
                 (!IGradientMachineMode::dataMustInCpu(mode_,
Z
zhangjinchao01 已提交
205 206 207 208
                                                       FLAGS_trainer_count));

  dataProvider_ = dataProvider;
  if (!dataProvider_ && config_->hasDataConfig()) {
209
    dataProvider_.reset(DataProvider::create(*config_, *config_, gpuData));
Z
zhangjinchao01 已提交
210
  }
E
emailweixu 已提交
211 212
  if (!testDataProvider_) {
    // No evaluator_ if there is testDataProvider but no dataProvider.
Z
zhangjinchao01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    evaluator_.reset(trainerInternal_.getGradientMachine()->makeEvaluator());
    currentEvaluator_.reset(
        trainerInternal_.getGradientMachine()->makeEvaluator());
    if (FLAGS_average_test_period > 0 && FLAGS_trainer_id == 0 &&
        config_->getOptConfig().average_window() > 0) {
      CHECK_EQ(FLAGS_average_test_period % FLAGS_log_period, 0)
          << "FLAGS_average_test_period must be divided by FALGS_log_period";
      averageEvaluator_.reset(
          trainerInternal_.getGradientMachine()->makeEvaluator());
    }
  }

  testDataProvider_ = testDataProvider;
  if (!testDataProvider_ && config_->hasTestDataConfig()) {
    testDataProvider_.reset(
228
        DataProvider::create(config_->getTestDataConfig(), *config_, gpuData));
Z
zhangjinchao01 已提交
229 230
  }
  if (testDataProvider_) {
E
emailweixu 已提交
231
    createTester();
Z
zhangjinchao01 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  }

  if (!testing &&
      (trainerInternal_.getGradientMachine()->hasStaticParameters())) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "is_static and loadsave_parameters_in_pserver can not both true";
  }
  if (testing) {
    // will load per pass for tester
  } else if (paramUtil_->tryLoadParametersFromConfig()) {
    // load from config already.
  } else {
    trainerInternal_.getGradientMachine()->randParameters();
  }

  // Only non static parameters need to be updated
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  if (trainerInternal_.getParameterUpdater()) {
    trainerInternal_.getParameterUpdater()->init(parameters);

    if (FLAGS_loadsave_parameters_in_pserver && FLAGS_trainer_id == 0) {
      if (testing) {
        // will load per pass for tester
      } else if (!config_->getConfig().init_model_path().empty() &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        paramUtil_->loadParametersWithPath(
              config_->getConfig().init_model_path(),
              false /*local*/, true /*remote*/);
      } else if (config_->getConfig().start_pass() > 0 &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        CHECK(paramUtil_->loadParameters(config_->getConfig().start_pass() - 1,
              false /*local*/, true /*remote*/));
      } else {
        trainerInternal_.getParameterUpdater()->randParametersRemote();
      }
    }
  }

  // set current evaluator and evalutor
  trainerInternal_.setCurrentEvaluator(currentEvaluator_.get());
  trainerInternal_.setEvaluator(evaluator_.get());
}

void Trainer::train(size_t numPasses) {
E
emailweixu 已提交
277
  startTrain();
Z
zhangjinchao01 已提交
278 279 280 281
  for (size_t i = 0; i < numPasses; ++i) {
    if (IGradientMachineMode::trainWholeDataInOneBatch(mode_)) {
      trainOnePassBatch(config_->getConfig().start_pass() + i);
    } else {
E
emailweixu 已提交
282
      trainOnePass();
Z
zhangjinchao01 已提交
283 284 285 286 287 288
    }
    if (i < numPasses - 1) {
      dataProvider_->reset();
    }
  }

E
emailweixu 已提交
289
  finishTrain();
Z
zhangjinchao01 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
}


static double genPerturbation(real* d, real* grad, size_t dim) {
  auto & reng = ThreadLocalRandomEngine::get();
  std::uniform_real_distribution<double> dist(-1, 1);
  double gradNorm = 0, dNorm = 0;
  for (size_t i = 0; i < dim; ++i) {
    d[i] = dist(reng);
    dNorm += d[i] * d[i];
    gradNorm += grad[i] * grad[i];
  }
  if (gradNorm > 0) {
    real s = 0.5 * sqrt(gradNorm / dNorm);
    for (size_t i = 0; i < dim; ++i) {
      d[i] = s * d[i] + grad[i];
    }
  }
  double delta = 0;
  for (size_t i = 0; i < dim; ++i) {
    delta += grad[i] * d[i];
  }
  return delta;
}

real Trainer::checkGradient() {
  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  dataProvider_->getNextBatch(batchSize, &dataBatch);

  CHECK(dataBatch.getSize()) << "No data from data provider";
  std::vector<Argument>& inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

  trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
  real cost = Argument::sumCosts(outArgs);
  LOG(INFO) << "original cost=" << cost;
  trainerInternal_.getGradientMachine()->backward();

  real maxDiff = 0;
  char fill = ' ';
  for (auto& parameter : parameters) {
    CpuVector oldPara(parameter->getSize());
    CpuVector newPara(parameter->getSize());
    oldPara.copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuVector cpuGrad(*parameter->getBuf(PARAMETER_GRADIENT));
    real* grad = cpuGrad.getData();
    size_t dim = parameter->getSize();
    std::vector<real> d(dim);

    double delta = genPerturbation(d.data(), grad, dim);

    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    delta *= step;
    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] + step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost1 = Argument::sumCosts(outArgs);

    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] - step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost2 = Argument::sumCosts(outArgs);

    real trueDelta = 0.5 * (newCost1 - newCost2);
    real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
    LOG(INFO) << std::setiosflags(std::ios::left) << std::setfill(fill)
              << std::setw(20) << parameter->getName()
              << "step=" << std::setw(15) << step << "cost1=" << std::setw(10)
              << newCost1 << "cost2=" << std::setw(10) << newCost2
              << "true_delta=" << std::setw(15) << trueDelta
              << "analytic_delta=" << std::setw(15) << delta << "diff=" << diff
              << (std::abs(diff) > 0.01 ? " ***" : "");

    maxDiff = std::max(maxDiff, std::abs(diff));

    // restore parameter
    parameter->getBuf(PARAMETER_VALUE)->copyFrom(oldPara);
    parameter->setValueUpdated();

    fill = (fill == ' ') ? '.' : ' ';
  }
  return maxDiff;
}

E
emailweixu 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
void Trainer::startTrain() {
  trainPassContext_.passId = config_->getConfig().start_pass();
  srand(config_->getConfig().start_pass() + 1);
  if (dataProvider_) {
    dataProvider_->reset();
  }

  if (this->testDataProvider_) {
    this->testDataProvider_->reset();
  }

  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
}

void Trainer::finishTrain() {
  trainerInternal_.getGradientMachine()->finish();
}

void Trainer::startTrainPass() {
  stats_->reset();
  trainPassContext_.batchId = 0;
  trainPassContext_.avgTestCost = 0;
  trainPassContext_.numAvgTests = 0;
  trainPassContext_.passInnerId = 1;
Z
zhangjinchao01 已提交
415 416 417 418 419 420 421

  trainerInternal_.getParameterUpdater()->startPass();
  evaluator_->start();
  if (FLAGS_prev_batch_state) {
    trainerInternal_.getGradientMachine()->resetState();
    trainerInternal_.getGradientMachine()->getState(testState_);
  }
E
emailweixu 已提交
422
}
Z
zhangjinchao01 已提交
423

E
emailweixu 已提交
424 425 426 427 428 429 430
void Trainer::trainOneDataBatch(DataBatch& dataBatch) {
  int num = dataBatch.getSize();
  if (averageEvaluator_) {
    int64_t mod = trainPassContext_.batchId % FLAGS_average_test_period;
    if (mod >= FLAGS_average_test_period - FLAGS_log_period) {
      if (mod == FLAGS_average_test_period - FLAGS_log_period) {
        averageEvaluator_->start();
Z
zhangjinchao01 已提交
431
      }
E
emailweixu 已提交
432 433 434 435 436 437 438 439 440 441 442 443
      trainerInternal_.getParameterUpdater()->apply();
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->getState(trainState_);
      }
      trainPassContext_.avgTestCost +=
          tester_->forwardOneBatch(
            dataBatch, averageEvaluator_.get(), &forwardOutput_);
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->setState(trainState_);
      }
      trainPassContext_.numAvgTests += num;
      trainerInternal_.getParameterUpdater()->restore();
Z
zhangjinchao01 已提交
444
    }
E
emailweixu 已提交
445 446 447 448 449 450
  }
  {
    REGISTER_TIMER("TrainBatch");
    trainerInternal_.trainOneBatch(
      trainPassContext_.batchId, dataBatch, &forwardOutput_);
  }
Z
zhangjinchao01 已提交
451

E
emailweixu 已提交
452 453 454 455 456 457 458 459 460 461 462
  if (averageEvaluator_ &&
      trainPassContext_.batchId % FLAGS_average_test_period
        == FLAGS_average_test_period - 1) {
    averageEvaluator_->finish();
    LOG(INFO) << " Averaged parameter:"
              << " cost=" << trainPassContext_.avgTestCost
                             / trainPassContext_.numAvgTests
              << " Eval: " << *averageEvaluator_;
    trainPassContext_.numAvgTests = 0;
    trainPassContext_.avgTestCost = 0;
  }
Z
zhangjinchao01 已提交
463

E
emailweixu 已提交
464
  ++trainPassContext_.batchId;
Z
zhangjinchao01 已提交
465

E
emailweixu 已提交
466 467 468 469 470
  if (trainPassContext_.batchId % FLAGS_log_period == 0) {
    FOR_TIMING(globalStat.setThreadInfo(true));
    FOR_TIMING(globalStat.printAllStatus());
    FOR_TIMING(globalStat.reset());
  }
Z
zhangjinchao01 已提交
471

E
emailweixu 已提交
472 473 474 475
  if (testDataProvider_ && FLAGS_test_period > 0 &&
      trainPassContext_.batchId % FLAGS_test_period == 0) {
    tester_->testOnePeriod();
  }
Z
zhangjinchao01 已提交
476

E
emailweixu 已提交
477 478 479 480 481 482 483
  if (FLAGS_saving_period_by_batches > 0 &&
      trainPassContext_.batchId
          > FLAGS_saving_period_by_batches * trainPassContext_.passInnerId &&
      0 == FLAGS_trainer_id) {
    trainerInternal_.getParameterUpdater()->catchUpWith();
    if (testDataProvider_) {
      tester_->testOnePeriod();
Z
zhangjinchao01 已提交
484
    }
E
emailweixu 已提交
485 486 487
    paramUtil_->saveParametersOnePass(
      trainPassContext_.passId, trainPassContext_.passInnerId);
    ++trainPassContext_.passInnerId;
Z
zhangjinchao01 已提交
488
  }
E
emailweixu 已提交
489
}
Z
zhangjinchao01 已提交
490

E
emailweixu 已提交
491 492
void Trainer::finishTrainPass() {
  if (trainPassContext_.batchId == 0) {
Z
zhangjinchao01 已提交
493 494 495 496
    // This means no more data from DataProvider
    return;
  }

E
emailweixu 已提交
497 498
  trainerInternal_.finishTrainPass(
    trainPassContext_.passId, trainPassContext_.batchId);
Z
zhangjinchao01 已提交
499 500 501 502 503 504 505 506 507

  FOR_TIMING(globalStat.setThreadInfo(true));
  FOR_TIMING(globalStat.printAllStatus());
  FOR_TIMING(globalStat.reset());

  if (testDataProvider_) {
    tester_->testOnePeriod();
  }

E
emailweixu 已提交
508 509 510
  if (trainPassContext_.passId % FLAGS_saving_period == 0
      && FLAGS_trainer_id == 0) {
    paramUtil_->saveParametersOnePass(trainPassContext_.passId);
Z
zhangjinchao01 已提交
511
  }
E
emailweixu 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  ++trainPassContext_.passId;
}

void Trainer::trainOnePass() {
  startTrainPass();
  size_t batchSize = config_->getOptConfig().batch_size();
  while (true) {
    DataBatch dataBatch;

    int num = 0;
    {
      REGISTER_TIMER("getTrainBatch");
      num = dataProvider_->getNextBatch(batchSize, &dataBatch);
    }
    if (num == 0) break;
    CHECK_EQ(num, dataBatch.getSize());
    trainOneDataBatch(dataBatch);
  }

  finishTrainPass();
Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

void Trainer::trainOnePassBatch(int passId) {
  this->stats_->reset();

  trainerInternal_.getParameterUpdater()->startPass();
  const std::vector<Argument> inArgs;
  {
    REGISTER_TIMER("onePass");
    trainerInternal_.getGradientMachine()->forwardBackward(inArgs, nullptr,
                                                        PASS_TRAIN, nullptr);
  }

  real cost = .0;
  int64_t num = 0;
  trainerInternal_.getGradientMachine()->getStats(cost, num);
  *stats_ += {num, cost};

  trainerInternal_.getGradientMachine()->onPassEnd();

  bool accepted =
    trainerInternal_.getParameterUpdater()->finishPass(cost);

  globalStat.setThreadInfo(true);
  globalStat.printAllStatus();
  globalStat.reset();

  LOG(INFO) << " Pass=" << passId
            << " AcceptedPass=" << (accepted ? acceptedPassId_ : -1)
            << stats_->getStats(false /*withCurrentCost*/);

  if (accepted) {
    if (acceptedPassId_ % FLAGS_saving_period == 0 && FLAGS_trainer_id == 0) {
      paramUtil_->saveParameters(acceptedPassId_);
    }
    acceptedPassId_++;
    if (FLAGS_save_only_one && acceptedPassId_ >= FLAGS_saving_period) {
      paramUtil_->deleteParameters(acceptedPassId_ - FLAGS_saving_period);
    }
  }
}

real Trainer::calcGradient(const DataBatch& dataBatch, const Vector& value,
                           Vector& gradient) {
  CHECK_EQ(value.getSize(), gradient.getSize());
  std::vector<ParameterPtr>& parameters =
    trainerInternal_.getGradientMachine()->getParameters();

  clearGradient();

  size_t offset = 0;
  size_t valueSize = value.getSize();

  for (auto& para : parameters) {
    CHECK_LE(offset + para->getSize(), valueSize);
    VectorPtr val =
        Vector::create(para->getSize(), value.getMemoryHandle(), offset);
    para->getBuf(PARAMETER_VALUE)->copyFrom(*val);
    para->setValueUpdated();
    offset += para->getSize();
  }

  CHECK_EQ(offset, valueSize);

  std::vector<Argument> inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

  trainerInternal_.getGradientMachine()->forwardBackward(inArgs, &outArgs,
                                                         PASS_TRAIN);
  real cost = Argument::sumCosts(outArgs);

  offset = 0;
  for (auto& para : parameters) {
    VectorPtr grad =
        Vector::create(para->getSize(), gradient.getMemoryHandle(), offset);
    if (para->getBuf(PARAMETER_GRADIENT)) {
      grad->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    }
    offset += para->getSize();
  }

  return cost;
}

void Trainer::clearGradient() {
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  for (auto& parameter : parameters) {
    parameter->clearGradient();
  }
}

int Trainer::getBatchSize() { return config_->getOptConfig().batch_size(); }

E
emailweixu 已提交
626 627 628 629 630 631 632
void Trainer::createTester() {
  tester_.reset(new paddle::Tester(config_, createTesterConfig(),
                                   trainerInternal_.getGradientMachine(),
                                   trainerInternal_.getParameterUpdater(),
                                   testDataProvider_));
}

Z
zhangjinchao01 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
void Trainer::test() {
  tester_->test();
}

std::unique_ptr<TesterConfig> Trainer::createTesterConfig() {
  TesterConfig* conf = new TesterConfig;
  conf->testPeriod = FLAGS_test_period;
  conf->testAllDataInOnePeriod = FLAGS_test_all_data_in_one_period;
  conf->prevBatchState = FLAGS_prev_batch_state;
  conf->logPeriod = FLAGS_log_period;
  conf->loadsaveParametersInPserver = FLAGS_loadsave_parameters_in_pserver;
  conf->featFile = FLAGS_feat_file;
  conf->predictOutputDir = FLAGS_predict_output_dir;
  conf->trainerId = FLAGS_trainer_id;
  conf->distributeTest = FLAGS_distribute_test;
  conf->config = FLAGS_config;
  conf->modelList = FLAGS_model_list;
  conf->testPass = FLAGS_test_pass;
  conf->numPasses = FLAGS_num_passes;
  conf->savingPeriod = FLAGS_saving_period;
  conf->testWait = FLAGS_test_wait;
  conf->initModelPath = FLAGS_init_model_path;
  conf->saveOnlyOne = FLAGS_save_only_one;
  conf->testing = testing_;
  conf->mode = mode_;
  conf->trainState = &trainState_;
  conf->testState = &testState_;
  return std::unique_ptr<TesterConfig>(conf);
}

ParameterUtil* Trainer::getParameterUtilPtr() {
  return paramUtil_.get();
}
}  // namespace paddle