slice_mkldnn_op.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/utils.h"
16 17
#include "paddle/fluid/platform/mkldnn_reuse.h"

18
static dnnl::memory::format_tag get_plain_format_tag(
19 20 21 22 23
    const paddle::framework::Tensor* tensor) {
  auto tensor_dims_size = tensor->dims().size();

  switch (tensor_dims_size) {
    case 1:
24
      return dnnl::memory::format_tag::a;
25
    case 2:
26
      return dnnl::memory::format_tag::ab;
27
    case 3:
28
      return dnnl::memory::format_tag::abc;
29
    case 4:
30
      return dnnl::memory::format_tag::abcd;
31
    case 5:
32
      return dnnl::memory::format_tag::abcde;
33 34
  }

35
  return dnnl::memory::format_tag::abcdef;
36 37
}

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SliceMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("Input");
    auto* out = ctx.Output<Tensor>("Out");

58
    auto x_vec_dims = pten::vectorize(x->dims());
59 60 61 62 63 64 65 66 67 68 69 70

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

71 72 73 74 75 76 77
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

78 79
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

80 81 82 83 84 85 86
    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

87 88 89 90 91 92 93 94 95 96 97
    std::vector<int64_t> offsets(x_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(x_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? x_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? x_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], x_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

98
    out->Resize(pten::make_ddim(slice_dims));
99

100 101
    dnnl::memory::data_type x_type =
        framework::ToMKLDNNDataType(framework::TransToProtoVarType(x->dtype()));
102

103 104 105
    platform::ReorderMKLDNNHandler reorder_handler(
        x_vec_dims, framework::TransToProtoVarType(x->dtype()), x_type,
        onednn_engine);
106 107 108 109 110 111

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        x->format(), platform::to_void_cast(x->data<T>()));
    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_src_memory_p);
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
112
        out, slice_dims, get_plain_format_tag(x), ctx.GetPlace());
113 114 115 116 117 118

    auto reorder_p =
        reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    std::vector<int64_t> new_out_dims(slice_dims.size() - decrease_axis.size());

    if (new_out_dims.size() == 0) {
      new_out_dims.emplace_back(1);
    } else {
      for (const auto& axis : decrease_axis) {
        slice_dims[axis] = 0;
      }

      int i = 0;
      for (const auto& slice_dim : slice_dims) {
        if (slice_dim != 0) new_out_dims[i++] = slice_dim;
      }
    }

    astream.wait();
135
    out->Resize(pten::make_ddim(new_out_dims));
136 137
    out->set_layout(framework::DataLayout::kMKLDNN);
    out->set_format(platform::GetMKLDNNFormat(
138
        reorder_dst_memory_p->get_desc().reshape(new_out_dims)));
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  }
};
template <typename T>
class SliceGradMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));

156 157
    auto dx_vec_dims = pten::vectorize(dx->dims());
    auto dout_vec_dims = pten::vectorize(dout->dims());
158 159 160 161 162 163 164 165 166 167 168 169

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

170 171 172 173 174 175 176 177 178 179 180 181 182 183
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

184 185 186 187 188 189 190 191 192 193 194 195 196
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    std::vector<int64_t> offsets(dx_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(dx_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? dx_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? dx_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], dx_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

197 198
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
199 200 201
    dnnl::memory::desc md(dout_vec_dims, platform::MKLDNNGetDataType<T>(),
                          dout->format());
    dnnl::memory::format_tag reorder_format_tag =
202 203
        platform::GetMKLDNNFormat(md.reshape(slice_dims));

204 205 206
    platform::ReorderMKLDNNHandler reorder_handler(
        slice_dims, framework::TransToProtoVarType(dout->dtype()), dout_type,
        onednn_engine);
207 208 209 210

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        reorder_format_tag, platform::to_void_cast(dout->data<T>()));
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
211
        dx, dx_vec_dims, reorder_format_tag, ctx.GetPlace());
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    memset(dx->data<T>(), 0, reorder_dst_memory_p->get_desc().get_size());

    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_dst_memory_p);

    auto reorder_p =
        reorder_handler.AcquireReorder(slice_mem_p, reorder_src_memory_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *slice_mem_p);
    astream.wait();

    dx->set_layout(framework::DataLayout::kMKLDNN);
    dx->set_format(reorder_format_tag);
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceMKLDNNKernel<float>,
Z
Zuza 已提交
233 234
                   ops::SliceMKLDNNKernel<int8_t>,
                   ops::SliceMKLDNNKernel<uint8_t>,
235 236 237 238 239
                   ops::SliceMKLDNNKernel<paddle::platform::bfloat16>);

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceGradMKLDNNKernel<float>,
240
                   ops::SliceGradMKLDNNKernel<paddle::platform::bfloat16>);