yolov3_loss_op.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
D
dengkaipeng 已提交
13
#include <memory>
14
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
15
#include "paddle/fluid/imperative/type_defs.h"
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
26 27 28 29 30 31 32 33 34
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Yolov3LossOp");
    OP_INOUT_CHECK(ctx->HasInput("GTBox"), "Input", "GTBox", "Yolov3LossOp");
    OP_INOUT_CHECK(ctx->HasInput("GTLabel"), "Input", "GTLabel",
                   "Yolov3LossOp");
    OP_INOUT_CHECK(ctx->HasOutput("Loss"), "Output", "Loss", "Yolov3LossOp");
    OP_INOUT_CHECK(ctx->HasOutput("ObjectnessMask"), "Output", "ObjectnessMask",
                   "Yolov3LossOp");
    OP_INOUT_CHECK(ctx->HasOutput("GTMatchMask"), "Output", "GTMatchMask",
                   "Yolov3LossOp");
35 36

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
37 38
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
39
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
40
    int anchor_num = anchors.size() / 2;
41 42
    auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
    int mask_num = anchor_mask.size();
43
    auto class_num = ctx->Attrs().Get<int>("class_num");
44

X
xiaoting 已提交
45 46 47 48 49
    PADDLE_ENFORCE_EQ(dim_x.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input(X) should be a 4-D tensor. But received "
                          "X dimension size(%s)",
                          dim_x.size()));
D
dengkaipeng 已提交
50
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
X
xiaoting 已提交
51 52 53 54
                      platform::errors::InvalidArgument(
                          "Input(X) dim[3] and dim[4] should be euqal."
                          "But received dim[3](%s) != dim[4](%s)",
                          dim_x[2], dim_x[3]));
55 56
    PADDLE_ENFORCE_EQ(
        dim_x[1], mask_num * (5 + class_num),
X
xiaoting 已提交
57 58 59 60 61 62
        platform::errors::InvalidArgument(
            "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
            "+ class_num))."
            "But received dim[1](%s) != (anchor_mask_number * "
            "(5+class_num)(%s).",
            dim_x[1], mask_num * (5 + class_num)));
D
dengkaipeng 已提交
63
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
X
xiaoting 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
                      platform::errors::InvalidArgument(
                          "Input(GTBox) should be a 3-D tensor, but "
                          "received gtbox dimension size(%s)",
                          dim_gtbox.size()));
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4,
                      platform::errors::InvalidArgument(
                          "Input(GTBox) dim[2] should be 4",
                          "But receive dim[2](%s) != 5. ", dim_gtbox[2]));
    PADDLE_ENFORCE_EQ(
        dim_gtlabel.size(), 2,
        platform::errors::InvalidArgument(
            "Input(GTLabel) should be a 2-D tensor,"
            "But received Input(GTLabel) dimension size(%s) != 2.",
            dim_gtlabel.size()));
    PADDLE_ENFORCE_EQ(
        dim_gtlabel[0], dim_gtbox[0],
        platform::errors::InvalidArgument(
            "Input(GTBox) dim[0] and Input(GTLabel) dim[0] should be same,"
            "But received Input(GTLabel) dim[0](%s) != "
            "Input(GTBox) dim[0](%s)",
            dim_gtlabel[0], dim_gtbox[0]));
    PADDLE_ENFORCE_EQ(
        dim_gtlabel[1], dim_gtbox[1],
        platform::errors::InvalidArgument(
            "Input(GTBox) and Input(GTLabel) dim[1] should be same,"
            "But received Input(GTBox) dim[1](%s) != Input(GTLabel) "
            "dim[1](%s)",
            dim_gtbox[1], dim_gtlabel[1]));
92
    PADDLE_ENFORCE_GT(anchors.size(), 0,
X
xiaoting 已提交
93 94 95 96
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be greater then 0."
                          "But received anchors length(%s)",
                          anchors.size()));
97
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
X
xiaoting 已提交
98 99 100 101
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be even integer."
                          "But received anchors length(%s)",
                          anchors.size()));
102 103 104
    for (size_t i = 0; i < anchor_mask.size(); i++) {
      PADDLE_ENFORCE_LT(
          anchor_mask[i], anchor_num,
X
xiaoting 已提交
105 106 107 108
          platform::errors::InvalidArgument(
              "Attr(anchor_mask) should not crossover Attr(anchors)."
              "But received anchor_mask[i](%s) > anchor_num(%s)",
              anchor_mask[i], anchor_num));
109
    }
110
    PADDLE_ENFORCE_GT(class_num, 0,
X
xiaoting 已提交
111 112 113 114
                      platform::errors::InvalidArgument(
                          "Attr(class_num) should be an integer greater then 0."
                          "But received class_num(%s) < 0",
                          class_num));
115

116 117 118
    if (ctx->HasInput("GTScore")) {
      auto dim_gtscore = ctx->GetInputDim("GTScore");
      PADDLE_ENFORCE_EQ(dim_gtscore.size(), 2,
X
xiaoting 已提交
119 120 121 122
                        platform::errors::InvalidArgument(
                            "Input(GTScore) should be a 2-D tensor"
                            "But received GTScore dimension(%s)",
                            dim_gtbox.size()));
123 124
      PADDLE_ENFORCE_EQ(
          dim_gtscore[0], dim_gtbox[0],
X
xiaoting 已提交
125 126 127 128
          platform::errors::InvalidArgument(
              "Input(GTBox) and Input(GTScore) dim[0] should be same"
              "But received GTBox dim[0](%s) != GTScore dim[0](%s)",
              dim_gtbox[0], dim_gtscore[0]));
129 130
      PADDLE_ENFORCE_EQ(
          dim_gtscore[1], dim_gtbox[1],
X
xiaoting 已提交
131 132 133 134
          platform::errors::InvalidArgument(
              "Input(GTBox) and Input(GTScore) dim[1] should be same"
              "But received GTBox dim[1](%s) != GTScore dim[1](%s)",
              dim_gtscore[1], dim_gtbox[1]));
135 136
    }

137
    std::vector<int64_t> dim_out({dim_x[0]});
138
    ctx->SetOutputDim("Loss", pten::make_ddim(dim_out));
139 140

    std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
141
    ctx->SetOutputDim("ObjectnessMask", pten::make_ddim(dim_obj_mask));
142 143

    std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
144
    ctx->SetOutputDim("GTMatchMask", pten::make_ddim(dim_gt_match_mask));
145 146 147 148 149
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
150 151 152
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
153 154 155 156 157 158 159
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
160
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
161
             "This is a 4-D tensor with shape of [N, C, H, W]."
T
tianshuo78520a 已提交
162
             "H and W should be same, and the second dimension(C) stores"
D
dengkaipeng 已提交
163
             "box locations, confidence score and classification one-hot"
164
             "keys of each anchor box");
165 166 167 168
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
T
tianshuo78520a 已提交
169 170
             "In the third dimension, stores x, y, w, h coordinates, "
             "x, y is the center coordinate of boxes and w, h is the "
D
dengkaipeng 已提交
171 172 173 174 175
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
176
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
177
             "box class id.");
178 179 180 181
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
182 183
             "augmentation.")
        .AsDispensable();
D
dengkaipeng 已提交
184 185
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
186
              "This is a 1-D tensor with shape of [N]");
187 188 189 190 191 192
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
193
              "This is an intermediate tensor with shape of [N, B], "
194 195 196
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
197 198

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
199 200
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
201 202 203 204 205 206
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
207
    AddAttr<int>("downsample_ratio",
208 209 210 211
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
212
    AddAttr<float>("ignore_thresh",
213 214
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
215 216
    AddAttr<bool>("use_label_smooth",
                  "Whether to use label smooth. Default True.")
217
        .SetDefault(true);
218 219 220 221
    AddAttr<float>("scale_x_y",
                   "Scale the center point of decoded bounding "
                   "box. Default 1.0")
        .SetDefault(1.);
222
    AddComment(R"DOC(
223
         This operator generates yolov3 loss based on given predict result and ground
224
         truth boxes.
225 226
         
         The output of previous network is in shape [N, C, H, W], while H and W
227
         should be the same, H and W specify the grid size, each grid point predict 
T
tink2123 已提交
228 229
         given number bounding boxes, this given number, which following will be represented as S,
         is specified by the number of anchor clusters in each scale. In the second dimension(the channel
230 231 232 233
         dimension), C should be equal to S * (class_num + 5), class_num is the object 
         category number of source dataset(such as 80 in coco dataset), so in the 
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor box.
234

D
dengkaipeng 已提交
235 236
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
237 238

         $$
239 240 241 242 243 244
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
245
         b_w = p_w e^{t_w}
246 247
         $$
         $$
248 249 250
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
251
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
252
         and :math:`p_w, p_h` is specified by anchors.
253 254 255

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
D
dengkaipeng 已提交
256
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore 
257 258
         thresh, the confidence score loss of this anchor box will be ignored.

259 260 261 262
         Therefore, the yolov3 loss consists of three major parts: box location loss,
         objectness loss and classification loss. The L1 loss is used for 
         box coordinates (w, h), sigmoid cross entropy loss is used for box 
         coordinates (x, y), objectness loss and classification loss.
263

264 265
         Each groud truth box finds a best matching anchor box in all anchors. 
         Prediction of this anchor box will incur all three parts of losses, and
266 267 268
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

269 270
         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
271
         calculated as follows.
272 273 274 275

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
276

D
dengkaipeng 已提交
277
         Final loss will be represented as follows.
D
dengkaipeng 已提交
278 279

         $$
280 281
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
282
         $$
283 284 285

         While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
         target will be smoothed when calculating classification loss, target of 
D
dengkaipeng 已提交
286 287
         positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
         negetive samples will be smoothed to :math:`1.0 / class\_num`.
288 289

         While :attr:`GTScore` is given, which means the mixup score of ground truth 
290
         boxes, all losses incured by a ground truth box will be multiplied by its 
291
         mixup score.
292 293 294 295 296 297 298 299
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
300 301 302 303 304 305
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Loss")), true,
        platform::errors::NotFound("Input(Loss@GRAD) should not be null"));
306 307 308 309 310 311
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

312
 protected:
313 314
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
315 316 317
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
318 319 320
  }
};

H
hong 已提交
321 322
template <typename T>
class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
323
 public:
H
hong 已提交
324
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
325 326

 protected:
327
  void Apply(GradOpPtr<T> op) const override {
328
    op->SetType("yolov3_loss_grad");
H
hong 已提交
329 330 331 332 333 334 335
    op->SetInput("X", this->Input("X"));
    op->SetInput("GTBox", this->Input("GTBox"));
    op->SetInput("GTLabel", this->Input("GTLabel"));
    op->SetInput("GTScore", this->Input("GTScore"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetInput("ObjectnessMask", this->Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", this->Output("GTMatchMask"));
336

H
hong 已提交
337
    op->SetAttrMap(this->Attrs());
338

H
hong 已提交
339
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
340 341 342
    op->SetOutput(framework::GradVarName("GTBox"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTLabel"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTScore"), this->EmptyInputGrad());
343 344 345
  }
};

346 347 348 349 350
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
H
hong 已提交
351 352
                  ops::Yolov3LossGradMaker<paddle::framework::OpDesc>,
                  ops::Yolov3LossGradMaker<paddle::imperative::OpBase>);
353
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
354 355 356 357
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);