grad_node_info.h 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/pten/api/all.h"

namespace egr {
/**
 * GradNodeBase is base class of all grad node, which is what should be used by
 * eager execution, we define most of backward autograd members here, and for
 * each Operator, they should hold their onw forward Inputs as TensorWrapper.
 *
 * The GradNodeBase will be held in autograd_meta, and it is also a member of
 * Edge, which indicates the edge of backward graph.
 *
 * TODO:(yangzhanlue) GradNodeBase will also in charge of get the correct input
 * from GradOpDescMaker to GradNodeBase.
 *
 * NOTE:GradNodeBase has a method named run, this method should be overrided by
 * the
 * specific derived class, it will prepare backward inputs and double backward's
 * depends. Then, it will call C++ API of backward kernel functions to finish
 * backward computation.
 *
 * NOTE:GradNodeBase holds its own inputs and Outputs
 *
 * Edge is defined to descripe depend of backward, an Edge is what linked
 * between two
 * node, it should contain a Node and rank of this Node (this is used to
 * indicate which
 * input of grad this edge belong).
 * */
class Edge;
class AutogradMeta;

/**
 * GradSlotMeta is used to Record Forward Tensor info to backward, since paddle
 * has lots of operators
 * whose backward logic is depends on if it has some specific inputs or outputs.
 * So, we need a meta info
 * to record it's needs.
 * **/
class GradSlotMeta {
 public:
  GradSlotMeta() = default;
  void Init(size_t size) {
    size_ = static_cast<int>(size);
    stop_gradient_.resize(size, false);
  }

  bool IsInitialized() const { return size_ != -1; }
  bool IsStopGradient(size_t rank) const { return stop_gradient_[rank]; }
  int Size() const { return size_; }
  void SetStopGradient(size_t rank, bool stop_gradient = true) {
    stop_gradient_.at(rank) = stop_gradient;
  }

 private:
  int size_{-1};
  std::vector<bool> stop_gradient_{false};
};

class GradNodeBase {
 public:
  GradNodeBase() = default;
  GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num);
  // TODO(jiabin): Should we have other constructor here?
  virtual ~GradNodeBase() = default;

  /**
   * operator() designed to contian the real backward execution logic, it should
   * be
   * overrided by derived class defined for each operator. It accepts a vector
   * of
   * Tensor which contains grads input of current operator
   *
   * Note: why we need backward inputs and outputs construct as vector of vector
91
   * of paddle::experimental::Tensor?
92 93 94 95
   * Since all of paddle op composite in form of {"Slot name ", vector<Var>},
   * so, vector of vector
   * is better choice to fit this format.
   * **/
96 97
  virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
      const std::vector<std::vector<paddle::experimental::Tensor>>& grads) = 0;
98 99 100 101 102 103 104 105 106

  /**
   * AddEdges is designed to set input tensors' backward Node as current
   * node's Edges.
   * This method should be call in forward code and for double backward depends
   * computation.
   *
   * This one is called slot by slot
   * **/
107 108
  void AddEdges(std::vector<AutogradMeta*>* metas, size_t slot_id);
  void AddEdges(AutogradMeta* meta, size_t slot_id);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

  /**
   * GetEdges is designed to get all edges of current node**/
  const std::vector<std::vector<Edge>>& GetEdges() const;

  /**
   * Get Input Meta of current Grad node**/
  const std::vector<GradSlotMeta>& InputMeta() const;
  /**
   * Get Output Meta of current Grad node**/
  const std::vector<GradSlotMeta>& OutputMeta() const;
  /**
   * Set bwd ins and outs info with forward vars
   * **/

124
  void SetGradInMeta(std::vector<AutogradMeta*>* fwd_out, size_t slot_rank);
125
  void SetGradInMeta(AutogradMeta* fwd_out, size_t slot_rank);
126

127
  void SetGradOutMeta(std::vector<AutogradMeta*>* fwd_in, size_t slot_rank);
128
  void SetGradOutMeta(AutogradMeta* fwd_in, size_t slot_rank);
129 130 131 132 133 134 135

  /**
   * Default setters for Grad in/out meta this should be used for same special
   * Node which will not create by user
   * **/
  void SetDefaultGradInOutMeta();
  /**
136
   * Register GradientHook
137
   * **/
138 139 140
  void RegisterGradientHook(size_t slot_id, size_t rank,
                            const std::function<paddle::experimental::Tensor(
                                const paddle::experimental::Tensor&)>& hook);
141 142

  /**
143
   * Apply GradientHook
144 145 146
   * **/
  inline bool GradientHooksRegistered() { return gradient_hooks_.size() != 0; }

147 148
  std::vector<std::vector<paddle::experimental::Tensor>> ApplyGradientHooks(
      const std::vector<std::vector<paddle::experimental::Tensor>>& tensors);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

 private:
  // TODO(jiabin): Use SmallVector instead after merge PR from develop

  // Edges recorded the backward related node info, which indicate all edges
  // linked
  // by this Grad Node.
  // Why we need vector<vector<Edge>>: Edges is as same rank as bwd output.
  std::vector<std::vector<Edge>> adj_edges_;

  // bwd_out_meta_ is used to record Grad output info for backward
  std::vector<GradSlotMeta> bwd_out_meta_;

  // bwd_in_meta_ used to record Grad input info for backward
  std::vector<GradSlotMeta> bwd_in_meta_;
  // Gradient Hooks
  // Customer may register a list of hooks which will be called in order during
  // backward
  // Each entry consists one pair of <out_rank, std::function>
  std::vector<std::tuple<
      /* slot id */ size_t, /* rank */ size_t,
170 171
      /* hook */ std::function<paddle::experimental::Tensor(
          const paddle::experimental::Tensor&)>>>
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      gradient_hooks_;
};

class Edge {
 public:
  // Default constructor for Edges in order to construct it for AutogradMeta
  Edge() : in_slot_id_(0), in_rank_(0), grad_node_(nullptr) {}

  // In real use cases we should create Edge from grad node and input rank which
  // indicate which edge it is.
  // Since we have slot design in operators we will have to locate an edge with
  // slot
  // and rank.
  Edge(const std::shared_ptr<GradNodeBase>& grad_node, size_t in_slot_id,
       size_t in_rank)
      : in_slot_id_(in_slot_id), in_rank_(in_rank), grad_node_(grad_node) {}

  Edge(const std::shared_ptr<GradNodeBase>& grad_node,
       const std::pair</* slot_id */ size_t, /* rank */ size_t>& rank_info)
      : in_slot_id_(rank_info.first),
        in_rank_(rank_info.second),
        grad_node_(grad_node) {}

  GradNodeBase* GetGradNode() const { return grad_node_.get(); }

  std::shared_ptr<GradNodeBase> GetMutableGradNode() const {
    return grad_node_;
  }

  std::pair<size_t, size_t> GetEdgeRankInfo() const {
    return std::make_pair(in_slot_id_, in_rank_);
  }

  void SetEdgeRankInfo(size_t slot_id, size_t in_rank) {
    in_slot_id_ = slot_id;
    in_rank_ = in_rank;
  }

  void SetEdgeRankInfo(
      const std::pair</* slot_id */ size_t, /* rank */ size_t>& edge_rank) {
    in_slot_id_ = edge_rank.first;
    in_rank_ = edge_rank.second;
  }

  // Currently we use grad_node_ to identify if a edge is initialized.
  bool IsInitialized() const { return grad_node_.get(); }

 private:
  size_t in_slot_id_;
  size_t in_rank_;
  std::shared_ptr<GradNodeBase> grad_node_;
};

}  // namespace egr