lod_tensor.cc 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15 16 17 18 19
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
F
fengjiayi 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/framework/var_type.h"
X
refine  
Xin Pan 已提交
24
#include "paddle/fluid/framework/version.h"
25

Y
Yi Wang 已提交
26 27
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
28

29 30 31
namespace paddle {
namespace framework {

武毅 已提交
32
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
33
  os << "{";
武毅 已提交
34
  for (auto &v : lod) {
35
    os << "{";
L
Liu Yiqun 已提交
36
    bool is_first = true;
武毅 已提交
37
    for (auto &i : v) {
L
Liu Yiqun 已提交
38 39 40 41 42 43
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
44 45 46 47 48 49 50 51
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
52
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
53 54
  os << "\tlod: " << t.lod() << "\n";
  os << static_cast<Tensor>(t) << "\n";
Y
Yang Yang 已提交
55 56 57 58

  return os;
}

Q
Qiao Longfei 已提交
59 60 61 62 63 64
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
65
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
66
                 size_t elem_end) {
67
  PADDLE_ENFORCE_LT(level, in.size());
68
  PADDLE_ENFORCE_LT(elem_begin, elem_end);
69 70 71 72 73 74 75 76
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
77 78 79
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
80 81
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
82
  }
83 84 85 86
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
87
    for (auto &ele : res[lvl]) {
88 89 90 91 92 93
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
94
LoD ToAbsOffset(const LoD &in) {
95 96 97
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
98 99 100 101
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
102 103 104
    }
  }
  return result;
105 106
}

武毅 已提交
107
bool operator==(const LoD &a, const LoD &b) {
108 109 110 111 112
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
113 114
    const auto &a_level = a[i];
    const auto &b_level = b[i];
115 116 117 118 119 120 121 122 123 124
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
125 126
}

Y
Yan Chunwei 已提交
127 128 129 130 131 132 133
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
134
    // check: all the offsets in a level should be non-descending
S
sneaxiy 已提交
135 136
    if (!std::is_sorted(level.begin(), level.end())) {
      return false;
Y
Yan Chunwei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
158
    // allowed).
Y
Yan Chunwei 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

181
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
182
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
183 184 185 186 187 188
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
189 190 191 192
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
193
    sub_lod.emplace_back(level_lens);
194 195 196
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
197 198

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
199 200
}

武毅 已提交
201
void AppendLoD(LoD *lod, const LoD &lod_length) {
202 203
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
204
      "The lod_length should has the same size with the appended lod.");
205
  if (lod->empty()) {
Y
Yang Yu 已提交
206 207 208
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
209 210
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
211
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
212
    auto &level = (*lod)[i];
213 214 215 216 217 218
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
219 220
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
221
  {  // the 1st field, uint32_t version for LoDTensor
X
refine  
Xin Pan 已提交
222 223
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
武毅 已提交
224
  }
225 226 227 228 229 230
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
231 232 233 234 235 236 237 238 239 240 241
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
242
  // the 3st field, Tensor
Y
Yi Wang 已提交
243
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
244 245
}

Y
Yancey 已提交
246 247
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
248
  {
Y
Yancey 已提交
249
    // the 1st field, unit32_t version for LoDTensor
250 251
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
X
refine  
Xin Pan 已提交
252 253
    PADDLE_ENFORCE(framework::IsTensorVersionSupported(version),
                   "tensor version %u is not supported.", version);
254
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
255
  }
256 257
  {
    // the 2st field, LoD information
武毅 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
271
  // the 3st filed, Tensor
Y
Yi Wang 已提交
272
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
273 274
}

Y
Yang Yang 已提交
275 276 277
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
278 279 280 281
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
282 283 284 285

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
286
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
287 288 289 290 291 292
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
293

294
    LoDTensor dst;
Y
Yang Yang 已提交
295 296
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
297
      auto &dst_place = places[i];
Y
Yi Wang 已提交
298
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
299 300 301 302 303
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
304
      auto &dst_place = places[i];
Y
Yi Wang 已提交
305
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
306 307 308 309 310 311 312 313 314 315 316

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
317
    results.emplace_back(dst);
Y
Yang Yang 已提交
318 319
  }

Y
Yu Yang 已提交
320
  return results;
Y
Yang Yang 已提交
321 322
}

Y
Yang Yang 已提交
323
void LoDTensor::MergeLoDTensor(
324 325
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
326
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
327

Y
Yang Yang 已提交
328
  framework::DDim new_dim = lod_tensors[0]->dims();
Y
Yu Yang 已提交
329
  auto new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
330 331 332 333
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
S
sneaxiy 已提交
334
    PADDLE_ENFORCE_EQ(new_type, t->type());
Y
Yang Yang 已提交
335 336 337 338 339 340 341
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
F
fengjiayi 已提交
342
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size());
Y
Yang Yang 已提交
343 344
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
C
chengduo 已提交
345
      size_t offset = sub_lod.back();
Y
Yang Yang 已提交
346 347 348 349
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
350 351
  }
  Resize(new_dim);
352
  set_layout(new_layout);
Y
Yang Yang 已提交
353
  set_lod(new_lod);
354
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
355

356
  int begin = 0;
Y
Yang Yang 已提交
357
  for (auto *src : lod_tensors) {
358 359
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
360
    framework::TensorCopy(*src, dst_place, &dst);
361
    begin = end;
Y
Yang Yang 已提交
362 363 364
  }
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

398 399
}  // namespace framework
}  // namespace paddle