shuffle_channel_op.h 3.3 KB
Newer Older
S
shippingwang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
S
shippingwang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
15

S
shippingwang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/phi/kernels/funcs/math_function.h"
S
shippingwang 已提交
18 19 20 21 22 23 24

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ShuffleChannelOpKernel : public framework::OpKernel<T> {
 public:
S
shippingwang 已提交
25
  void Compute(const framework::ExecutionContext& ctx) const override {
S
shippingwang 已提交
26 27
    auto* input = ctx.Input<framework::Tensor>("X");
    auto* output = ctx.Output<framework::Tensor>("Out");
S
shippingwang 已提交
28
    int group = ctx.Attr<int>("group");
S
shippingwang 已提交
29

Z
Zhang Jun 已提交
30
    const auto& input_dims = input->dims();
S
shippingwang 已提交
31 32 33 34 35 36 37 38
    auto num = input_dims[0];
    auto channel = input_dims[1];
    auto height = input_dims[2];
    auto weight = input_dims[3];

    auto feature_map_size = channel * height * weight;
    auto sp_sz = height * weight;
    int group_row = group;
S
shippingwang 已提交
39
    int group_column = channel / group_row;
S
shippingwang 已提交
40 41

    const T* input_data = input->data<T>();
S
shippingwang 已提交
42
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
S
shippingwang 已提交
43 44 45
    for (int n = 0; n < num; ++n) {
      for (int i = 0; i < group_row; ++i) {
        for (int j = 0; j < group_column; ++j) {
S
shippingwang 已提交
46 47 48 49 50
          const T* p_i = input_data + n * feature_map_size +
                         (i * group_column + j) * sp_sz;
          T* p_o =
              output_data + n * feature_map_size + (j * group_row + i) * sp_sz;
          memcpy(p_o, p_i, sizeof(int) * sp_sz);
S
shippingwang 已提交
51 52 53 54 55 56 57 58 59 60
        }
      }
    }
  }
};

template <typename DeviceContext, typename T>
class ShuffleChannelGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
61 62 63 64 65
    auto* output_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* input_grad =
        ctx.Output<framework::Tensor>(framework::GradVarName("X"));

S
shippingwang 已提交
66
    int group = ctx.Attr<int>("group");
S
shippingwang 已提交
67

68
    const auto& input_dims = input_grad->dims();
S
shippingwang 已提交
69 70 71 72 73 74 75 76
    auto num = input_dims[0];
    auto channel = input_dims[1];
    auto height = input_dims[2];
    auto weight = input_dims[3];
    auto feature_map_size = channel * height * weight;
    auto sp_sz = height * weight;

    int group_row = group;
S
shippingwang 已提交
77
    int group_column = channel / group_row;
S
shippingwang 已提交
78 79 80 81 82 83

    T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    const T* output_grad_data = output_grad->data<T>();
    for (int n = 0; n < num; ++n) {
      for (int i = 0; i < group_row; ++i) {
        for (int j = 0; j < group_column; ++j) {
S
shippingwang 已提交
84 85 86 87 88
          const T* p_i = output_grad_data + n * feature_map_size +
                         (i * group_column + j) * sp_sz;
          T* p_o = input_grad_data + n * feature_map_size +
                   (j * group_row + i) * sp_sz;
          memcpy(p_o, p_i, sizeof(int) * sp_sz);
S
shippingwang 已提交
89 90 91 92 93 94 95 96
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle