operator.cc 28.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15 16
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL

17 18
#include <gflags/gflags.h>
#include <glog/logging.h>
19

20
#include <algorithm>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
24
#include "paddle/fluid/framework/lod_tensor.h"
25
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
26 27
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
28
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
29

D
dzhwinter 已提交
30
DECLARE_bool(benchmark);
C
chengduoZH 已提交
31 32 33
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
34

Q
Qiao Longfei 已提交
35 36 37
namespace paddle {
namespace framework {

38 39 40 41 42 43
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
44

Q
qiaolongfei 已提交
45 46 47 48 49 50 51 52 53 54 55
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

56 57
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
58
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
59 60
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
61 62
  }

M
minqiyang 已提交
63 64
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
65
    if (UNLIKELY(!tensor.IsInitialized())) {
66
      return DDim({-1});
67
    }
M
minqiyang 已提交
68 69 70 71 72 73 74
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
75 76 77 78 79
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
80 81 82 83 84 85
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
86 87 88 89 90
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
91

M
minqiyang 已提交
92 93 94
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
95 96
      return "";
    }
M
minqiyang 已提交
97 98
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
99 100 101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return DataTypeToString(ToDataType(tensor.type()));
    }
D
dzhwinter 已提交
105 106 107 108 109
  } else {
    return "";
  }
}

110 111 112 113 114 115
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
116 117
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
118 119 120 121 122
  }

  return -1;
}

Q
Qiao Longfei 已提交
123 124 125 126 127 128 129 130
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
131 132 133
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
134 135
      return default_lod;
    }
M
minqiyang 已提交
136
    return tensor.lod();
Q
Qiao Longfei 已提交
137 138 139 140 141
  } else {
    return default_lod;
  }
}

142
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
143 144
  VLOG(4) << place << " " << DebugStringEx(&scope);
  if (platform::is_gpu_place(place)) {
145
#ifndef PADDLE_WITH_CUDA
146
    PADDLE_THROW("Cannot run operator on place %s", place);
147
#else
148 149
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
150 151
#endif
  }
152 153 154 155 156 157 158 159 160 161 162

  // The profile has a process-wide mutex, results in serious performance issue
  // in concurrency scenerio. Here use an `if` to fix this issue.
  // Please not remove the `if`, ask @Superjomn if there are any concern.
  if (platform::IsProfileEnabled()) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
  } else {
    RunImpl(scope, place);
  }
163
  VLOG(3) << place << " " << DebugStringEx(&scope);
164 165
}

166 167 168 169 170 171 172 173
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

174
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
175
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
176
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
177 178
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
179
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
180 181
}

Y
Yu Yang 已提交
182 183
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
184
  auto it = inputs_.find(name);
185 186
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
187
  return it->second;
Y
Yan Chunwei 已提交
188 189
}

190
bool OperatorBase::HasOutputs(const std::string& name) const {
191
  if (outputs_.find(name) != outputs_.end()) {
192 193 194 195 196 197
    return true;
  } else {
    return false;
  }
}

198
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
199
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
200
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
201 202
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
203
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
204 205
}

Y
Yu Yang 已提交
206 207
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
208
  auto it = outputs_.find(name);
209 210
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
211
  return it->second;
Y
Yan Chunwei 已提交
212 213
}

214
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
215
  std::stringstream ss;
Y
Yu Yang 已提交
216
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
217 218
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
219 220
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
221 222
      auto var_name = input.second[i];
      ss << var_name;
223
      if (scope) {
Q
Qiao Longfei 已提交
224 225 226 227 228 229 230 231 232 233 234
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
235
        }
236
      }
Y
Yu Yang 已提交
237 238 239
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
240
    }
Y
Yu Yang 已提交
241
    ss << "]";
Y
Yu Yang 已提交
242 243
    ++it;
    if (it != inputs_.end()) {
244 245
      ss << ", ";
    }
Q
Qiao Longfei 已提交
246
  }
Y
Yu Yang 已提交
247
  ss << "}, outputs:{";
Y
Yu Yang 已提交
248 249
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
250 251
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
252 253
      auto var_name = output.second[i];
      ss << var_name;
254
      if (scope) {
Q
Qiao Longfei 已提交
255 256 257 258 259 260 261 262 263
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
264
        }
265
      }
Y
Yu Yang 已提交
266 267 268
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
269
    }
Y
Yu Yang 已提交
270
    ss << "]";
Y
Yu Yang 已提交
271 272
    ++it;
    if (it != outputs_.end()) {
273 274
      ss << ", ";
    }
Q
Qiao Longfei 已提交
275
  }
Y
Yu Yang 已提交
276
  ss << "}.";
Q
Qiao Longfei 已提交
277 278 279
  return ss.str();
}

Y
Yu Yang 已提交
280
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
281 282
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
283 284
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
285 286
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
287
}
288

Q
qijun 已提交
289 290
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
291
  for (auto& o : inputs_) {
Q
qijun 已提交
292 293 294 295 296 297
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
298 299 300 301 302 303 304 305 306 307
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
308
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
309 310

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
311
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
321 322
}

323 324 325
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
326
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
327 328

  for (auto& in : op_info->Proto().inputs()) {
329 330 331 332
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
333 334 335
  }

  for (auto& out : op_info->Proto().outputs()) {
336 337 338 339 340
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

C
chengduo 已提交
357 358
static bool VarIsTensor(const Variable& var) {
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
359 360
}

C
chengduo 已提交
361
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
362 363 364 365
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
366
  } else {
Y
Yang Yang 已提交
367
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
C
chengduo 已提交
368
                 var.Type().name());
Q
QI JUN 已提交
369 370 371
  }
}

C
chengduo 已提交
372
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
373
  if (var->IsType<LoDTensor>()) {
374
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
375
  } else if (var->IsType<SelectedRows>()) {
376
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
377
  } else {
Y
Yang Yang 已提交
378 379
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
380 381 382
  }
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

415
template <>
416
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
417
  return Input<LoDTensor>(name);
418 419 420
}

template <>
421
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
422 423 424 425
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
426
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
427
                 [&](const std::string& sub_name) -> const Tensor* {
428
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
429 430 431 432 433 434
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return &(var->Get<LoDTensor>());
435
                 });
436 437 438 439
  return res;
}

template <>
440
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
441
  return Output<LoDTensor>(name);
442 443 444
}

template <>
445
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
446 447 448 449
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
450
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
451
                 [&](const std::string& sub_name) -> Tensor* {
452
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
453 454 455 456 457 458
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return var->GetMutable<LoDTensor>();
459
                 });
460 461 462
  return res;
}

Y
Yu Yang 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

478 479 480 481 482 483
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
484 485 486 487
    // has only one input
    const auto& ins = op_.Inputs();
    auto it = ins.find(name);
    if (it == ins.end()) {
488 489
      return false;
    }
490
    const auto& in = it->second;
T
tensor-tang 已提交
491
    if (in.size() == 0 || in[0] == kEmptyVarName) {
492 493
      return false;
    }
T
tensor-tang 已提交
494
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
495
                      "Input %s should not have more than one inputs", name);
496
    return scope_.FindVar(in[0]) != nullptr;
497 498 499
  }

  bool HasOutput(const std::string& name) const override {
500 501 502 503
    // has only one output
    const auto& outs = op_.Outputs();
    auto it = outs.find(name);
    if (it == outs.end()) {
504 505
      return false;
    }
506
    const auto& out = it->second;
T
tensor-tang 已提交
507
    if (out.size() == 0 || out[0] == kEmptyVarName) {
508 509
      return false;
    }
T
tensor-tang 已提交
510 511
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
512
    return scope_.FindVar(out[0]) != nullptr;
513 514 515
  }

  bool HasInputs(const std::string& name) const override {
516 517 518
    if (!op_.HasInputs(name)) {
      return false;
    }
519 520 521 522 523 524 525 526 527 528 529 530 531
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
532 533 534
    if (!op_.HasOutputs(name)) {
      return false;
    }
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    const std::string& input_n = Inputs(in)[i];
    const std::string& output_n = Outputs(out)[j];

    Variable* in_var = scope_.FindVar(input_n);
    Variable* out_var = scope_.FindVar(output_n);
    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
                   "The type of %s and %s is not the same.", output_n,
                   GetDim(input_n));

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
589 590
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
591 592 593 594 595
    const std::vector<std::string>& inputs = Inputs(in);
    const std::vector<std::string>& outputs = Outputs(out);
    PADDLE_ENFORCE_LT(i, inputs.size());
    PADDLE_ENFORCE_LT(j, outputs.size());
    Variable* in_var = scope_.FindVar(inputs.at(i));
Q
Qiao Longfei 已提交
596
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
597
    Variable* out_var = scope_.FindVar(outputs.at(j));
Q
Qiao Longfei 已提交
598 599 600 601 602
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
603

M
mozga-intel 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
623 624
  }

625 626 627
  bool IsRuntime() const override { return true; }

 protected:
628 629
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
630
    PADDLE_ENFORCE_NOT_NULL(var);
631 632 633 634 635
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
636 637 638 639 640 641 642
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
643
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
644
    PADDLE_THROW("Only compile time support this method");
645 646 647 648 649 650 651 652 653
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
654 655
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
656 657 658
    }
  }

F
fengjiayi 已提交
659 660
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
661
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
662 663
  }

664
  proto::VarType::Type GetVarType(const std::string& name) const override {
665 666 667 668
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
669 670 671 672
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

673
 private:
674 675 676 677
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
678 679 680 681 682
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
683
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
684 685 686 687 688 689 690 691
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

692 693
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
694 695
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
696
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
697
  auto* dev_ctx = pool.Get(place);
698

699 700 701 702
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
703 704
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
705 706
  }

Q
qiaolongfei 已提交
707 708
  OpKernelMap& kernels = kernels_iter->second;

709 710
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
711

712 713 714 715
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
716 717
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
718 719
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

720
  auto kernel_iter = kernels.find(expected_kernel_key);
721
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
722
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
723 724
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
725
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
726 727 728 729 730
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
731 732 733 734 735
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
736 737 738 739
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
740

Y
yuyang18 已提交
741 742 743 744 745 746
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
747
  }
Q
QI JUN 已提交
748

Y
yuyang18 已提交
749
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
750

Y
yuyang18 已提交
751 752 753
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
754 755
  }

D
dzhwinter 已提交
756
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
757
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
758
    dev_ctx->Wait();
D
dzhwinter 已提交
759
  }
C
chengduoZH 已提交
760 761 762

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
763
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
764 765 766
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
767 768
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
769 770 771
      }
    }
  }
Q
Qiao Longfei 已提交
772
}
Y
yuyang18 已提交
773 774 775 776 777
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
778 779
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
780 781 782
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
783
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
784 785 786 787 788 789 790 791 792 793 794 795
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
796
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
797 798 799
        continue;
      }

C
chengduo 已提交
800
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
827
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
828 829 830 831 832 833
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
834

835
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
836 837 838
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
839
  std::string last_input_name;
Y
Yu Yang 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
854 855
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
856 857
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
858
          data_type = tmp;
859
          last_input_name = ipt_name;
Y
Yu Yang 已提交
860 861 862 863 864
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
865
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
866
}
867

868 869 870 871 872 873 874 875
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
876 877
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
878 879
}

Q
Qiao Longfei 已提交
880
}  // namespace framework
L
liaogang 已提交
881
}  // namespace paddle