index_en.md 21.5 KB
Newer Older
1
# Quick Start
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

This tutorial will teach the basics of deep learning (DL), including how to implement many different models in PaddlePaddle. You will learn how to:
  - Prepare data into the standardized format that PaddlePaddle accepts.
  - Write data providers that read data into PaddlePaddle.
  - Configure neural networks in PaddlePaddle layer by layer.
  - Train models.
  - Perform inference with trained models.


## Install

To get started, please install PaddlePaddle on your computer. Throughout this tutorial, you will learn by implementing different DL models for text classification.

15
To install PaddlePaddle, please follow the instructions here: <a href = "../../getstarted/build_and_install/index_en.html" >Build and Install</a>.
Z
zhangjinchao01 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

## Overview
For the first step, you will use PaddlePaddle to build a **text classification** system. For example, suppose you run an e-commence  website, and you want to analyze the sentiment of user reviews to evaluate product quality.

For example, given the input

```
This monitor is fantastic.
```

Your classifier should output “positive”, since this text snippet shows that the user is satisfied with the product. Given this input:

```
The monitor breaks down two months after purchase.
```

the classifier should output “negative“.

To build your text classification system, your code will need to perform five steps:
L
liaogang 已提交
35
<center> ![](./src/Pipeline_en.jpg) </center>
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

  - Preprocess data into a standardized format.
  - Provide data to the learning model.
  - Specify the neural network structure.
  - Train the model.
  - Inference (make prediction on test examples).


1. Preprocess data into standardized format
    - In the text classification example, you will start with a text file with one training example per line. Each line contains category id (in machine learning, often denoted the target y), followed by the input text (often denoted x); these two elements are separated by a Tab. For example: ```positive [tab] This monitor is fantastic```. You will preprocess this raw data into a format that Paddle can use.

2. Provide data to the learning model.
    - You can write data providers in Python. For any required data preprocessing step, you can add the preprocessing code to the PyDataProvider Python file.
    - In our text classification example, every word or character will be converted into an integer id, specified in a dictionary file. It perform a dictionary lookup in PyDataProvider to get the id.
3. Specify neural network structure.  (From easy to hard, we provide 4 kinds of network configurations)
    - A logistic regression model.
    - A word embedding model.
    - A convolutional neural network model.
    - A sequential recurrent neural network model.
    - You will also learn different learning algorithms.
4. Training model.
5. Inference.

## Preprocess data into standardized format
In this example, you are going to use [Amazon electronic product review dataset](http://jmcauley.ucsd.edu/data/amazon/) to build a bunch of deep neural network models for text classification. Each text in this dataset is a product review. This dataset has two categories: “positive” and “negative”. Positive means the reviewer likes the product, while negative means the reviewer does not like the product.

62
`demo/quick_start` in the [source code](https://github.com/PaddlePaddle/Paddle) provides script for downloading the preprocessed data as shown below. (If you want to process the raw data, you can use the script `demo/quick_start/data/proc_from_raw_data/get_data.sh`).
Z
zhangjinchao01 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

```bash
cd demo/quick_start
./data/get_data.sh
```

## Transfer Data to Model
### Write Data Provider with Python
The following `dataprovider_bow.py` gives a complete example of writing data provider with Python. It includes the following parts:

* initalizer: define the additional meta-data of the data provider and the types of the input data.
* process: Each `yield` returns a data sample. In this case, it return the text representation and category id. The order of features in the returned result needs to be consistent with the definition of the input types in `initalizer`.

```python
from paddle.trainer.PyDataProvider2 import *

# id of the word not in dictionary
UNK_IDX = 0

# initializer is called by the framework during initialization.
# It allows the user to describe the data types and setup the
# necessary data structure for later use.
# `settings` is an object. initializer need to properly fill settings.input_types.
# initializer can also store other data structures needed to be used at process().
# In this example, dictionary is stored in settings.
# `dictionay` and `kwargs` are arguments passed from trainer_config.lr.py
def initializer(settings, dictionary, **kwargs):
    # Put the word dictionary into settings
    settings.word_dict = dictionary

    # setting.input_types specifies what the data types the data provider
    # generates.
    settings.input_types = [
        # The first input is a sparse_binary_vector,
        # which means each dimension of the vector is either 0 or 1. It is the
        # bag-of-words (BOW) representation of the texts.
        sparse_binary_vector(len(dictionary)),
        # The second input is an integer. It represents the category id of the
        # sample. 2 means there are two labels in the dataset.
        # (1 for positive and 0 for negative)
        integer_value(2)]

# Delaring a data provider. It has an initializer 'data_initialzer'.
# It will cache the generated data of the first pass in memory, so that
# during later pass, no on-the-fly data generation will be needed.
# `setting` is the same object used by initializer()
# `file_name` is the name of a file listed train_list or test_list file given
# to define_py_data_sources2(). See trainer_config.lr.py.
@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
    # Open the input data file.
    with open(file_name, 'r') as f:
        # Read each line.
        for line in f:
            # Each line contains the label and text of the comment, separated by \t.
            label, comment = line.strip().split('\t')

            # Split the words into a list.
            words = comment.split()

            # convert the words into a list of ids by looking them up in word_dict.
            word_vector = [settings.word_dict.get(w, UNK_IDX) for w in words]

            # Return the features for the current comment. The first is a list
            # of ids representing a 0-1 binary sparse vector of the text,
            # the second is the integer id of the label.
            yield word_vector, int(label)
```

### Define Python Data Provider in Configuration files.
You need to add a data provider definition `define_py_data_sources2` in our network configuration. This definition specifies:

- The path of the training and testing data (`data/train.list`, `data/test.list`).
W
wenboyang 已提交
136
- The location of the data provider file (`dataprovider_bow`).
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
- The function to call to get data. (`process`).
- Additional arguments or data. Here it passes the path of word dictionary.

```python
from paddle.trainer_config_helpers import *

file = "data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
    for i, line in enumerate(f):
        w = line.strip().split()[0]
        word_dict[w] = i
# define the data sources for the model.
# We need to use different process for training and prediction.
# For training, the input data includes both word IDs and labels.
# For prediction, the input data only includs word Ids.
define_py_data_sources2(train_list='data/train.list',
                        test_list='data/test.list',
                        module="dataprovider_bow",
                        obj="process",
                        args={"dictionary": word_dict})
```
Y
Yu Yang 已提交
159
You can refer to the following link for more detailed examples and data formats: <a href = "../../api/v1/data_provider/pydataprovider2_en.html">PyDataProvider2</a>.
Z
zhangjinchao01 已提交
160 161

## Network Architecture
Y
Yunfeng Wang 已提交
162
We will describe four kinds of network architectures in this section.
L
liaogang 已提交
163
<center> ![](./src/PipelineNetwork_en.jpg) </center>
Z
zhangjinchao01 已提交
164 165

First, you will build a logistic regression model. Later, you will also get chance to build other more powerful network architectures.
Y
Yu Yang 已提交
166
For more detailed documentation, you could refer to: <a href = "../../api/v1/trainer_config_helpers/layers.html">layer documentation</a>. All configuration files are in `demo/quick_start` directory.
Z
zhangjinchao01 已提交
167 168 169

### Logistic Regression
The architecture is illustrated in the following picture:
L
liaogang 已提交
170
<center> ![](./src/NetLR_en.png) </center>
Z
zhangjinchao01 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184

- You need define the data for text features. The size of the data layer is the number of words in the dictionary.

```python
word = data_layer(name="word",  size=voc_dim)
```

- You also need to define the category id for each example. The size of the data layer is the number of labels.

```python
label = data_layer(name="label", size=label_dim)
```

- It uses logistic regression model to classify the vector, and it will output the classification error during training.
L
liaogang 已提交
185 186 187 188
    - Each layer has an *input* argument that specifies its input layer. Some layers can have multiple input layers. You can use a list of the input layers as input in that case.
    - *size* for each layer means the number of neurons of the layer.
    - *act_type* means activation function applied to the output of each neuron independently.
    - Some layers can have additional special inputs. For example, `classification_cost` needs ground truth label as input to compute classification loss and error.
Z
zhangjinchao01 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
```python
# Define a fully connected layer with logistic activation (also called softmax activation).
output = fc_layer(input=word,
                  size=label_dim,
                  act_type=SoftmaxActivation())
# Define cross-entropy classification loss and error.
classification_cost(input=output, label=label)
```

Performance summary: You can refer to the training and testing scripts later. In order to compare different network architectures, the model complexity and test classification error are listed in the following table:

<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">

<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>

<tbody>
<tr>
<td class="left">Logistic regression</td>
<td class="left">252 KB</td>
<td class="left">8.652%</td>
</tr>

</tbody>
</table></center>
</html>
<br>

### Word Embedding Model
224
In order to use the word embedding model, you need to change the data provider a little bit to make the input words as a sequence of word IDs. The revised data provider `dataprovider_emb.py` is listed below. You only need to change initializer() for the type of the first input. It is changed from sparse_binary_vector to sequence of intergers.  process() remains the same. This data provider can also be used for later sequence models.
Z
zhangjinchao01 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

```python
def initializer(settings, dictionary, **kwargs):
    # Put the word dictionary into settings
    settings.word_dict = dictionary
    settings.input_types = [
        # Define the type of the first input as a sequence of integers.
        integer_value_sequence(len(dictionary)),
        # Define the second input for label id
        integer_value(2)]

@provider(init_hook=initializer)
def process(settings, file_name):
    ...
    # omitted, it is same as the data provider for LR model
```

This model is very similar to the framework of logistic regression, but it uses word embedding vectors instead of a sparse vectors to represent words.
L
liaogang 已提交
243
<center> ![](./src/NetContinuous_en.png) </center>
Z
zhangjinchao01 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

- It can look up the dense word embedding vector in the dictionary  (its words embedding vector is `word_dim`). The input is a sequence of N words, the output is N word_dim dimensional vectors.

```python
emb = embedding_layer(input=word, dim=word_dim)
```

- It averages all the word embedding in a sentence to get its sentence representation.

```python
avg = pooling_layer(input=emb, pooling_type=AvgPooling())
```

The other parts of the model are the same as logistic regression network.

259
The performance is summarized in the following table:
Z
zhangjinchao01 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">

<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>

<tbody>
<tr>
<td class="left">Word embedding model</td>
<td class="left">15 MB</td>
<td class="left">8.484%</td>
</tr>

</tbody>
</table>
</html></center>
<br>

### Convolutional Neural Network Model
Convolutional neural network converts a sequence of word embeddings into a sentence representation using temporal convolutions. You will transform the fully connected layer of the word embedding model to 3 new sub-steps.
L
liaogang 已提交
286
<center> ![](./src/NetConv_en.png) </center>
Z
zhangjinchao01 已提交
287 288 289 290 291 292 293 294 295 296 297


Text convolution has 3 steps:
1. Get K nearest neighbor context of each word in a sentence, stack them into a 2D vector representation.
2. Apply temporal convolution to this representation to produce a new hidden_dim dimensional vector.
3. Apply max-pooling to the new vectors at all the time steps in a sentence to get a sentence representation.

```python
# context_len means convolution kernel size.
# context_start means the start of the convolution. It can be negative. In that case, zero padding is applied.
text_conv = sequence_conv_pool(input=emb,
L
liaogang 已提交
298 299
                               context_start=k,
                               context_len=2 * k + 1)
Z
zhangjinchao01 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
```

The performance is summarized in the following table:

<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">

<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>

<tbody>
<tr>
<td class="left">Convolutional model</td>
<td class="left">16 MB</td>
<td class="left">5.628%</td>
</tr>

</tbody>
</table></center>
<br>

### Recurrent Model
L
liaogang 已提交
327
<center> ![](./src/NetRNN_en.png) </center>
Z
zhangjinchao01 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

You can use Recurrent neural network as our time sequence model, including simple RNN model, GRU model, and LSTM model。

- GRU model can be specified via:

```python
gru = simple_gru(input=emb, size=gru_size)
```

- LSTM model can be specified via:

```python
lstm = simple_lstm(input=emb, size=lstm_size)
```

You can use single layer LSTM model with Dropout for our text classification problem. The performance is summarized in the following table:

<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">

<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>

<tbody>
<tr>
<td class="left">Recurrent model</td>
<td class="left">16 MB</td>
<td class="left">4.812%</td>
</tr>

</tbody>
</table></center>
</html>
<br>

## Optimization Algorithm
Y
Yu Yang 已提交
369
<a href = "../../api/v1/trainer_config_helpers/optimizers.html">Optimization algorithms</a> include Momentum, RMSProp, AdaDelta, AdaGrad, Adam, and Adamax. You can use Adam optimization method here, with L2 regularization and gradient clipping, because Adam has been proved to work very well for training recurrent neural network.
Z
zhangjinchao01 已提交
370 371 372 373 374 375 376 377 378 379 380

```python
settings(batch_size=128,
         learning_rate=2e-3,
         learning_method=AdamOptimizer(),
         regularization=L2Regularization(8e-4),
         gradient_clipping_threshold=25)
```

## Training Model
After completing data preparation and network architecture specification, you will run the training script.
L
liaogang 已提交
381
<center> ![](./src/PipelineTrain_en.png) </center>
Z
zhangjinchao01 已提交
382 383 384 385 386 387 388 389 390 391 392 393

Training script: our training script is in `train.sh` file. The training arguments are listed below:

```bash
paddle train \
--config=trainer_config.py \
--log_period=20 \
--save_dir=./output \
--num_passes=15 \
--use_gpu=false
```

394
We do not provide examples on how to train on clusters here. If you want to train on clusters, please follow the <a href = "../../howto/usage/cluster/cluster_train_en.html">distributed training</a> documentation or other demos for more details.
395

Z
zhangjinchao01 已提交
396 397
## Inference
You can use the trained model to perform prediction on the dataset with no labels. You can also evaluate the model on dataset with labels to obtain its test accuracy.
L
liaogang 已提交
398
<center> ![](./src/PipelineTest_en.png) </center>
Z
zhangjinchao01 已提交
399

400
The test script is listed below. PaddlePaddle can evaluate a model on the data with labels specified in `test.list`.
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408 409

```bash
paddle train \
--config=trainer_config.lstm.py \
--use_gpu=false \
--job=test \
--init_model_path=./output/pass-0000x
```

Y
Yu Yang 已提交
410
We will give an example of performing prediction using Recurrent model on a dataset with no labels. You can refer to <a href = "../../api/v1/predict/swig_py_paddle_en.html">Python Prediction API</a> tutorial,or other <a href = "../../tutorials/index_en.html">demo</a> for the prediction process using Python. You can also use the following script for inference or evaluation.
Z
zhangjinchao01 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

inference script (predict.sh):

```bash
model="output/pass-00003"
paddle train \
    --config=trainer_config.lstm.py \
    --use_gpu=false \
    --job=test \
    --init_model_path=$model \
    --config_args=is_predict=1 \
    --predict_output_dir=. \

mv rank-00000 result.txt
```
426
User can choose the best model base on the training log instead of model `output/pass-00003`. There are several differences between training and inference network configurations.
Z
zhangjinchao01 已提交
427 428 429 430 431
- You do not need labels during inference.
- Outputs need to be specified to the classification probability layer (the output of softmax layer), or the id of maximum probability (`max_id` layer). An example to output the id and probability is given in the code snippet.
- batch_size = 1.
- You need to specify the location of `test_list` in the test data.

D
dangqingqing 已提交
432 433 434 435 436 437 438 439
The results in `result.txt` is as follows, each line is one sample.

```
predicted_label_id;probability_of_label_0 probability_of_label_1  # the first sample
predicted_label_id;probability_of_label_0 probability_of_label_1  # the second sample
```


Z
zhangjinchao01 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
```python
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
obj = 'process' if not is_predict else 'process_pre'
batch_size = 128 if not is_predict else 1
if is_predict:
    maxid = maxid_layer(output)
    outputs([maxid,output])
else:
    label = data_layer(name="label", size=2)
    cls = classification_cost(input=output, label=label) outputs(cls)
```

## Summary
The scripts of data downloading, network configurations, and training scrips are in `/demo/quick_start`. The following table summarizes the performance of our network architecture on Amazon-Elec dataset(25k):

<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">

<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Error rate</th>
<th scope="col" class="left">Configuration file name</th>
</tr>
</thead>

<tbody>
<tr>
<td class="left">Logistic regression model(BOW)</td>
<td class="left"> 252KB </td>
<td class="left">8.652%</td>
<td class="left">trainer_config.lr.py</td>
</tr>

<tr>
<td class="left">Word embedding</td>
<td class="left"> 15MB </td>
<td class="left"> 8.484%</td>
480
<td class="left">trainer_config.emb.py</td>
Z
zhangjinchao01 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
</tr>

<tr>
<td class="left">Convolution model</td>
<td class="left"> 16MB </td>
<td class="left"> 5.628%</td>
<td class="left">trainer_config.cnn.py</td>
</tr>

<tr>
<td class="left">Time sequence model</td>
<td class="left"> 16MB </td>
<td class="left"> 4.812%</td>
<td class="left">trainer_config.lstm.py</td>
</tr>

</tbody>
</table>
</center>
<br>

## Appendix
### Command Line Argument

505 506 507 508 509 510
* \--config:network architecture path.
* \--save_dir:model save directory.
* \--log_period:the logging period per batch.
* \--num_passes:number of training passes. One pass means the training would go over the whole training dataset once.
* \--config_args:Other configuration arguments.
* \--init_model_path:The path of the initial model parameter.
Z
zhangjinchao01 已提交
511

512
By default, the trainer will save model every pass. You can also specify `saving_period_by_batches` to set the frequency of batch saving. You can use `show_parameter_stats_period` to print the statistics of the parameters, which are very useful for tuning parameters. Other command line arguments can be found in <a href = "../../howto/usage/cmd_parameter/index_en.html">command line argument documentation</a>
Z
zhangjinchao01 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

### Log

```
TrainerInternal.cpp:160]  Batch=20 samples=2560 AvgCost=0.628761 CurrentCost=0.628761 Eval: classification_error_evaluator=0.304297  CurrentEval: classification_error_evaluator=0.304297
```
During model training, you will see the log like the examples above:
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">

<thead>
<th scope="col" class="left">Name</th>
<th scope="col" class="left">Explanation</th>
</tr>
</thead>

<tr>
<td class="left">Batch=20</td>
<td class="left"> You have trained 20 batches. </td>
</tr>

<tr>
<td class="left">samples=2560</td>
<td class="left"> You have trained 2560 examples. </td>
</tr>

<tr>
<td class="left">AvgCost</td>
<td class="left"> The average cost from the first batch to the current batch. </td>
</tr>

<tr>
<td class="left">CurrentCost</td>
<td class="left"> the average cost of the last log_period batches </td>
</tr>

<tr>
<td class="left">Eval: classification_error_evaluator</td>
<td class="left"> The average classification error from the first batch to the current batch.</td>
</tr>

<tr>
<td class="left">CurrentEval: classification_error_evaluator</td>
<td class="left"> The average error rate of the last log_period batches </td>
</tr>

</tbody>
</table>
</center>
<br>