trt_utils.h 4.1 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <cassert>
#include <functional>
#include <memory>
#include <unordered_map>

#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvInferRuntimeCommon.h>
#include "glog/logging.h"
#include "paddle/phi/core/dense_tensor.h"

namespace infrt {
namespace backends {
namespace tensorrt {

#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

#define IS_TRT_VERSION_LT(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)

#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

inline nvinfer1::Dims VecToDims(const std::vector<int>& vec) {
  int limit = static_cast<int>(nvinfer1::Dims::MAX_DIMS);
  if (static_cast<int>(vec.size()) > limit) {
    assert(false);
  }
  // Pick first nvinfer1::Dims::MAX_DIMS elements
  nvinfer1::Dims dims{std::min(static_cast<int>(vec.size()), limit), {}};
  std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d));
  return dims;
}

template <typename T>
struct TrtDestroyer {
  void operator()(T* t) { t->destroy(); }
};

template <typename T>
using TrtUniquePtr = std::unique_ptr<T, TrtDestroyer<T>>;

class TrtLogger : public nvinfer1::ILogger {
 public:
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) noexcept override {
    switch (severity) {
      case Severity::kVERBOSE:
        VLOG(3) << msg;
        break;
      case Severity::kINFO:
        VLOG(2) << msg;
        break;
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }
  nvinfer1::ILogger& GetTrtLogger() noexcept { return *this; }
  ~TrtLogger() override = default;
};

struct Binding {
  bool is_input{false};
  nvinfer1::DataType data_type{nvinfer1::DataType::kFLOAT};
  phi::DenseTensor* buffer{nullptr};
  std::string name;
};

class Bindings {
 public:
  Bindings() = default;

  void AddBinding(int32_t b,
                  const std::string& name,
                  bool is_input,
                  phi::DenseTensor* buffer,
                  nvinfer1::DataType data_type) {
    while (bindings_.size() <= static_cast<size_t>(b)) {
      bindings_.emplace_back();
    }
    names_[name] = b;
    bindings_[b].buffer = buffer;
    bindings_[b].is_input = is_input;
    bindings_[b].data_type = data_type;
    bindings_[b].name = name;
  }

  std::vector<Binding> GetInputBindings() {
    return GetBindings([](const Binding& b) -> bool { return b.is_input; });
  }

  std::vector<Binding> GetOutputBindings() {
    return GetBindings([](const Binding& b) -> bool { return !b.is_input; });
  }

  std::vector<Binding> GetBindings() {
    return GetBindings([](const Binding& b) -> bool { return true; });
  }

  std::vector<Binding> GetBindings(
      std::function<bool(const Binding& b)> predicate) {
    std::vector<Binding> bindings;
    for (const auto& b : bindings_) {
      if (predicate(b)) {
        bindings.push_back(b);
      }
    }
    return bindings;
  }

 private:
  std::unordered_map<std::string, int32_t> names_;
  std::vector<Binding> bindings_;
};

}  // namespace tensorrt
}  // namespace backends
}  // namespace infrt