concat_and_split.cc 9.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15
#include "paddle/fluid/operators/math/concat_and_split.h"
16
#ifdef PADDLE_WITH_ASCEND_CL
17
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
18
#endif
W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class CPUDeviceContext;
struct bfloat16;
struct float16;
}  // namespace platform
}  // namespace paddle
C
chengduoZH 已提交
30 31 32 33 34 35

namespace paddle {
namespace operators {
namespace math {

/*
C
chengduoZH 已提交
36
 * All tensors' dimension should be the same and the values of
37
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
38 39 40 41 42
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
43
                  const std::vector<framework::Tensor>& input, int axis,
C
chengduoZH 已提交
44
                  framework::Tensor* output) {
C
chengduoZH 已提交
45
    // TODO(zcd): Add input data validity checking
W
wuhuachaocoding 已提交
46
    size_t num = input.size();
C
chengduoZH 已提交
47

W
wuhuachaocoding 已提交
48
    int64_t rows = 1;
C
chengduoZH 已提交
49 50 51 52
    auto dim_0 = input[0].dims();
    for (int i = 0; i < axis; ++i) {
      rows *= dim_0[i];
    }
W
wuhuachaocoding 已提交
53
    int64_t out_rows = rows, out_cols = 0;
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55
    std::vector<int64_t> input_cols(input.size());
W
wuhuachaocoding 已提交
56 57
    for (size_t i = 0; i < num; ++i) {
      int64_t t_cols = input[i].numel() / rows;
C
chengduoZH 已提交
58
      out_cols += t_cols;
C
chengduoZH 已提交
59
      input_cols[i] = t_cols;
C
chengduoZH 已提交
60
    }
61
    auto cpu_place = context.GetPlace();
C
chengduoZH 已提交
62

C
chengduoZH 已提交
63
    // computation
L
luotao1 已提交
64
    auto output_data = output->data<T>();
W
wuhuachaocoding 已提交
65 66 67
    int64_t col_idx = 0;
    for (size_t j = 0; j < num; ++j) {
      int64_t col_len = input_cols[j];
L
luotao1 已提交
68
      auto input_data = input[j].data<T>();
W
wuhuachaocoding 已提交
69
      for (int64_t k = 0; k < out_rows; ++k) {
L
luotao1 已提交
70 71
        memory::Copy(cpu_place, output_data + k * out_cols + col_idx, cpu_place,
                     input_data + k * col_len, sizeof(T) * col_len);
C
chengduoZH 已提交
72
      }
L
luotao1 已提交
73
      col_idx += col_len;
C
chengduoZH 已提交
74
    }
C
chengduoZH 已提交
75 76 77
  }
};

C
chengduoZH 已提交
78 79
/*
 * All tensors' dimension should be the same and the values of
80
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
81
 */
C
chengduoZH 已提交
82
template <typename T>
C
chengduo 已提交
83
class SplitFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
84 85
 public:
  void operator()(const platform::CPUDeviceContext& context,
Q
qiaolongfei 已提交
86
                  const framework::Tensor& input,
C
chengduoZH 已提交
87
                  const std::vector<const framework::Tensor*>& ref_inputs,
Q
qiaolongfei 已提交
88
                  const int axis, std::vector<framework::Tensor*>* outputs) {
L
Leo Chen 已提交
89 90 91 92 93 94
    // NOTE(zhiqiu): split a tensor of shape [0,3,4] at axis=1, result in 3
    // tensors of shape [0,1,4]
    if (input.numel() == 0) {
      return;
    }

C
chengduoZH 已提交
95
    // TODO(zcd): Add input data validity checking
Q
qiaolongfei 已提交
96
    size_t num = outputs->size();
C
chengduoZH 已提交
97

C
chengduoZH 已提交
98
    int input_rows = 1;
Q
qiaolongfei 已提交
99
    auto dim_0 = ref_inputs[0]->dims();
C
chengduoZH 已提交
100 101 102
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }
Q
qiaolongfei 已提交
103

C
chengduoZH 已提交
104 105
    int input_cols = 0;

106
    std::vector<int64_t> output_cols(outputs->size());
Q
qiaolongfei 已提交
107 108
    for (size_t i = 0; i < num; ++i) {
      int t_cols = ref_inputs[i]->numel() / input_rows;
C
chengduoZH 已提交
109 110 111
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
112
    auto cpu_place = context.GetPlace();
C
chengduoZH 已提交
113 114

    // computation
C
chengduoZH 已提交
115
    for (int k = 0; k < input_rows; ++k) {
C
chengduoZH 已提交
116 117
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
C
chengduoZH 已提交
118
      for (size_t j = 0; j < num; ++j) {
C
chengduoZH 已提交
119
        int col_len = output_cols[j];
Q
qiaolongfei 已提交
120
        auto* out_tensor = outputs->at(j);
Q
qiaolongfei 已提交
121 122 123 124 125
        if (out_tensor != nullptr) {
          T* dst_ptr = out_tensor->data<T>() + k * col_len;
          memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx,
                       sizeof(T) * col_len);
        }
C
chengduoZH 已提交
126 127 128
        col_idx += col_len;
      }
    }
C
chengduoZH 已提交
129 130
  }
};
131 132 133 134 135 136 137 138 139 140 141 142

#ifdef PADDLE_WITH_XPU
/*
 * All tensors' dimension should be the same and the values of
 * each dimension must be the same, except the axis dimension.
 */
template <typename T>
class ConcatFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
143
    int dev_id = context.GetPlace().GetDeviceId();
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    platform::XPUDeviceGuard guard(dev_id);

    int num = input.size();
    auto input_dims = input[0].dims();

    std::vector<std::vector<int>> xdims_list(num);
    for (int i = 0; i < num; ++i) {
      std::vector<int> tmp_dims(input_dims.size());
      for (int j = 0; j < input_dims.size(); ++j) {
        tmp_dims[j] = input[i].dims()[j];
      }
      xdims_list[i] = tmp_dims;
    }

    std::vector<const T*> ptrs;
    for (int i = 0; i < num; ++i) {
      ptrs.push_back(input[i].data<T>());
    }

    auto r = xpu::concat<T>(context.x_context(), ptrs, output->data<T>(),
                            xdims_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};

template <typename T>
class SplitFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
181
    int dev_id = context.GetPlace().GetDeviceId();
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    platform::XPUDeviceGuard guard(dev_id);

    auto& ins = ref_inputs;

    int num = ins.size();
    auto input_dims = ins[0]->dims();
    std::vector<int> split_list(num);
    std::vector<int> xdims_list(input_dims.size());
    int total_length = 0;
    for (int i = 0; i < num; ++i) {
      split_list[i] = ins[i]->dims()[axis];
      total_length += ins[i]->dims()[axis];
    }

    for (int i = 0; i < input_dims.size(); ++i) {
      if (i == axis) continue;
      xdims_list[i] = input_dims[i];
    }
    xdims_list[axis] = total_length;

    std::vector<T*> ptrs(num);
    for (int i = 0; i < num; ++i) {
      ptrs[i] = outputs->at(i)->data<T>();
    }

    auto r = xpu::split<T>(context.x_context(), input.data<T>(), ptrs,
                           xdims_list, split_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};
#endif

219 220 221 222 223 224 225
#ifdef PADDLE_WITH_ASCEND_CL
template <typename T>
class ConcatFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
226
    int dev_id = context.GetPlace().GetDeviceId();
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    platform::NPUDeviceGuard guard(dev_id);

    std::vector<std::string> names;
    for (size_t i = 0; i < input.size(); ++i) {
      names.push_back("x" + std::to_string(i));
    }
    NpuOpRunner runner{
        "ConcatD",
        {input},
        {*output},
        {{"concat_dim", axis}, {"N", static_cast<int>(input.size())}}};
    runner.AddInputNames(names);
    runner.Run(context.stream());
  }
};

template <typename T>
class SplitFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
    if (input.numel() == 0) {
      return;
    }

    size_t num = outputs->size();

    int input_rows = 1;
    auto dim_0 = ref_inputs[0]->dims();
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }

    int input_cols = 0;

    std::vector<int64_t> output_cols(outputs->size());
    for (size_t i = 0; i < num; ++i) {
      int t_cols = ref_inputs[i]->numel() / input_rows;
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
270
    auto npu_place = context.GetPlace();
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    // computation
    for (int k = 0; k < input_rows; ++k) {
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
      for (size_t j = 0; j < num; ++j) {
        int col_len = output_cols[j];
        auto* out_tensor = outputs->at(j);
        if (out_tensor != nullptr) {
          T* dst_ptr = out_tensor->data<T>() + k * col_len;
          memory::Copy(npu_place, dst_ptr, npu_place, src_ptr + col_idx,
                       sizeof(T) * col_len, context.stream());
        }
        col_idx += col_len;
      }
    }
  }
};
#endif

C
chengduoZH 已提交
291 292
#define DEFINE_FUNCTOR(type)                                      \
  template class ConcatFunctor<platform::CPUDeviceContext, type>; \
C
chengduo 已提交
293
  template class SplitFunctor<platform::CPUDeviceContext, type>;
C
chengduoZH 已提交
294

C
chengduoZH 已提交
295
FOR_ALL_TYPES(DEFINE_FUNCTOR);
C
chengduoZH 已提交
296

297 298 299 300 301 302 303 304
#ifdef PADDLE_WITH_XPU
#define DEFINE_XPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::XPUDeviceContext, type>; \
  template class SplitFunctor<platform::XPUDeviceContext, type>;

DEFINE_XPU_FUNCTOR(float)
#endif

305 306 307 308 309 310 311 312
#ifdef PADDLE_WITH_ASCEND_CL
#define DEFINE_NPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::NPUDeviceContext, type>; \
  template class SplitFunctor<platform::NPUDeviceContext, type>;

FOR_ALL_TYPES(DEFINE_NPU_FUNCTOR)
#endif

C
chengduoZH 已提交
313 314 315
}  // namespace math
}  // namespace operators
}  // namespace paddle