auto_parallel_data_unshard.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import copy
import numpy as np
import random

import paddle
import paddle.nn as nn
import paddle.fluid.core as core
26
from paddle.distributed.fleet import auto
27 28 29 30 31 32 33 34
import paddle.nn.functional as F
from paddle.distributed import fleet

paddle.enable_static()
paddle.distributed.init_parallel_env()


class TestDataUnshard(unittest.TestCase):
35

36
    def test_dp2pp1mp1(self):
37

38 39 40
        def create_model(train_program, start_program):
            with paddle.static.program_guard(train_program, start_program):

41
                MESH_0 = auto.ProcessMesh([0, 1], dim_names=["x"])
42 43 44 45
                input = paddle.static.data(name='input', shape=[2, 8])
                label = paddle.static.data(name='label', shape=[2, 8])

                weight_attr = paddle.ParamAttr(
46
                    initializer=nn.initializer.Normal(mean=0.0, std=0.02))
47 48 49
                linear0 = nn.Linear(8, 8, weight_attr)
                linear1 = nn.Linear(8, 8, weight_attr)

50 51 52 53
                auto.shard_tensor(input, MESH_0, ["x", None])
                auto.shard_tensor(label, MESH_0, ["x", None])
                auto.shard_tensor(linear0.weight, MESH_0, [None, None])
                auto.shard_tensor(linear1.weight, MESH_0, [None, None])
54 55 56 57

                linear0_out = linear0(input)
                gelu_out = F.gelu(linear0_out)
                linear1_out = linear1(gelu_out)
58 59
                error_cost = paddle.nn.functional.square_error_cost(
                    linear1_out, label)
60 61 62 63 64 65 66 67 68 69 70 71
                loss = paddle.mean(error_cost)
                return train_program, start_program, loss, input, label

        train_program = paddle.static.Program()
        start_program = paddle.static.Program()
        # serial program
        train_program, start_program, loss, input, label = create_model(
            train_program, start_program)

        dist_strategy = fleet.DistributedStrategy()
        dist_strategy.semi_auto = True
        fleet.init(is_collective=True, strategy=dist_strategy)
72 73 74 75 76
        optimizer = paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.00001,
                                                         beta1=0.9,
                                                         beta2=0.999,
                                                         epsilon=1e-08,
                                                         grad_clip=None)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

        optimizer = fleet.distributed_optimizer(optimizer)
        _, _, distributed_startup_program, distributed_main_program = optimizer.minimize(
            loss, start_program)

        worker_index = paddle.distributed.get_rank()
        paddle.seed(worker_index + 2021)
        random.seed(worker_index + 2021)
        np.random.seed(worker_index + 2021)

        place = paddle.set_device("gpu")
        exe = paddle.static.Executor(place)
        exe.run(distributed_startup_program)

        input_data = np.array(range(2 * 8)).reshape([2, 8]).astype("float32")
        label_data = np.random.randint(0, 10, [2, 8]).astype("float32")

94 95 96
        fetchs = [loss.name, 'split@RESHARD.tmp_0'] if worker_index == 0 else [
            loss.name, 'split@RESHARD.tmp_1'
        ]
97 98 99 100 101 102
        loss_np, shard_data_np = exe.run(distributed_main_program,
                                         feed={
                                             "input": input_data,
                                             "label": label_data
                                         },
                                         fetch_list=fetchs)
103 104 105 106
        desired = input_data[worker_index].reshape(shard_data_np.shape)
        np.testing.assert_allclose(shard_data_np, desired)

    def dp1pp1mp2(self):
107

108 109 110
        def create_model(train_program, start_program):
            with paddle.static.program_guard(train_program, start_program):

111
                MESH_0 = auto.ProcessMesh([0, 1], dim_names=["x"])
112 113 114 115
                input = paddle.static.data(name='input', shape=[8, 8])
                label = paddle.static.data(name='label', shape=[8, 8])

                weight_attr = paddle.ParamAttr(
116
                    initializer=nn.initializer.Normal(mean=0.0, std=0.02))
117 118 119
                linear0 = nn.Linear(8, 8, weight_attr)
                linear1 = nn.Linear(8, 8, weight_attr)

120 121 122 123
                auto.shard_tensor(input, MESH_0, [None, None])
                auto.shard_tensor(label, MESH_0, [None, None])
                auto.shard_tensor(linear0.weight, MESH_0, [None, "x"])
                auto.shard_tensor(linear1.weight, MESH_0, ["x", None])
124 125 126 127 128 129

                linear0_out = linear0(input)
                gelu_out = F.gelu(linear0_out)

                linear1_out = linear1(gelu_out)

130 131
                error_cost = paddle.nn.functional.square_error_cost(
                    linear1_out, label)
132 133 134 135 136 137 138 139 140 141 142 143
                loss = paddle.mean(error_cost)
                return train_program, start_program, loss, input, label

        train_program = paddle.static.Program()
        start_program = paddle.static.Program()
        # serial program
        train_program, start_program, loss, input, label = create_model(
            train_program, start_program)

        dist_strategy = fleet.DistributedStrategy()
        dist_strategy.semi_auto = True
        fleet.init(is_collective=True, strategy=dist_strategy)
144 145 146 147 148
        optimizer = paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.00001,
                                                         beta1=0.9,
                                                         beta2=0.999,
                                                         epsilon=1e-08,
                                                         grad_clip=None)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

        optimizer = fleet.distributed_optimizer(optimizer)
        _, _, distributed_startup_program, distributed_main_program = optimizer.minimize(
            loss, start_program)

        worker_index = paddle.distributed.get_rank()
        paddle.seed(worker_index + 2021)
        random.seed(worker_index + 2021)
        np.random.seed(worker_index + 2021)

        place = paddle.set_device("gpu")
        exe = paddle.static.Executor(place)
        exe.run(distributed_startup_program)

        input_data = np.array(range(8 * 8)).reshape([8, 8]).astype("float32")
        label_data = np.random.randint(0, 10, [8, 8]).astype("float32")

        fetchs = [loss.name, 'input']
167 168 169 170 171 172
        loss_np, shard_data_np = exe.run(distributed_main_program,
                                         feed={
                                             "input": input_data,
                                             "label": label_data
                                         },
                                         fetch_list=fetchs)
173 174 175 176 177 178 179

        desired = input_data.reshape(shard_data_np.shape)
        np.testing.assert_allclose(shard_data_np, desired)


if __name__ == "__main__":
    unittest.main()