conv_fusion_op.cu 19.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16

17
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
20
#include "paddle/fluid/operators/conv_op.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22
#include "paddle/phi/kernels/funcs/padding.h"
Q
qingqing01 已提交
23

24
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
25 26 27 28

namespace paddle {
namespace operators {

R
ronnywang 已提交
29
#if PADDLE_WITH_HIP || CUDNN_VERSION >= 7100
Q
qingqing01 已提交
30 31 32 33 34 35
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
36
using framework::AlgorithmsCache;
37
using framework::ConvSearchCache;
38

Q
qingqing01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
52
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
66 67 68 69

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

70 71
    Tensor transformed_input_channel(input->dtype());
    Tensor transformed_output(output->dtype());
72 73
    transformed_input_channel = *input;
    transformed_output = *output;
74 75
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
76
    const T* residual_data = residual ? residual->data<T>() : output_data;
77

78 79 80
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
81
    framework::DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
82 83

    framework::DDim filter_data_dims =
84 85
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
86 87 88 89
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
90
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
110
      framework::DDim new_input_shape(phi::make_ddim(new_input_shape_vec));
111 112 113 114 115 116 117 118 119 120 121
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
122 123
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              dev_ctx, input_pad, transformed_input_channel, pad_value,
124 125 126
              &transformed_input);
        } break;
        case 5: {
127 128
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              dev_ctx, input_pad, transformed_input_channel, pad_value,
129 130 131
              &transformed_input);
        } break;
        default:
132 133
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
134
              "But received the actual dimension = %d, shape = [%s].",
135
              rank, transformed_input_channel.dims()));
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
152 153 154 155 156 157 158 159 160 161 162 163

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
R
ronnywang 已提交
164 165 166
#ifdef PADDLE_WITH_HIP
    miopenConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(padding_common, strides, dilations);
167
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
168 169 170 171 172 173
        platform::dynload::miopenSetConvolutionGroupCount(cudnn_conv_desc,
                                                          groups));
    // Now only support NCHW
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
174
        layout, phi::vectorize<int>(transformed_input.dims()));
R
ronnywang 已提交
175
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
176
        layout, phi::vectorize<int>(transformed_output.dims()));
177
    miopenTensorDescriptor_t cudnn_filter_desc =
178
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
R
ronnywang 已提交
179 180 181 182
    miopenTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    miopenActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);
Q
qingqing01 已提交
183

R
ronnywang 已提交
184 185 186 187
    miopenConvFwdAlgorithm_t algo;
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

188 189
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
R
ronnywang 已提交
190 191

    size_t workspace_size = 0;
192
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
193 194 195 196 197 198
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
            handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
            cudnn_output_desc, &workspace_size));
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
199
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, input_data, cudnn_filter_desc,
              filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
              kNUM_CUDNN_FWD_ALGS, &find_count, &find_result,
              cudnn_workspace_ptr, workspace_size, false));
    };
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
    VLOG(3) << "cuDNN forward algo " << algo;

    {
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
      auto cudnn_func = [&](void* cudnn_workspace) {
213
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenConvolutionForward(
R
ronnywang 已提交
214 215 216 217 218
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, &beta, cudnn_output_desc,
            output_data, cudnn_workspace, workspace_size));
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size);
219
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
220 221 222 223
          platform::dynload::miopenConvolutionForwardBias(
              handle, &alpha, cudnn_bias_desc, bias_data, &beta,
              cudnn_output_desc, output_data));
      if (activation != "identity") {
224
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenActivationForward(
R
ronnywang 已提交
225 226 227 228
            handle, cudnn_act_desc, &alpha, cudnn_output_desc, output_data,
            &beta, cudnn_output_desc, output_data));
      }
      if (residual) {
229
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenOpTensor(
R
ronnywang 已提交
230 231 232 233 234 235
            handle, miopenTensorOpAdd, &alpha, cudnn_output_desc, output_data,
            &alpha, cudnn_output_desc, residual_data, &beta, cudnn_output_desc,
            output_data));
      }
    }
#else  // PADDLE_WITH_HIP
Q
qingqing01 已提交
236
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
237
        conv_desc.descriptor<T>(padding_common, strides, dilations);
238 239
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
Q
qingqing01 已提交
240 241

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
242
        layout, phi::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
243
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
244
        layout, phi::vectorize<int>(transformed_output.dims()));
245
    cudnnFilterDescriptor_t cudnn_filter_desc =
246
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
247
    // Now only support NCHW
248 249
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
250 251 252 253 254 255 256
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
257
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
258 259
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
260
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
261 262 263 264 265 266 267
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
268
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
269

270
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
271
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
272
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
273
    if (!platform::allow_tf32_cudnn) {
274 275
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_FMA_MATH));
A
AshburnLee 已提交
276
    }
A
AshburnLee 已提交
277
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
278

279 280
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
281
    if (!exhaustive_search) {
282
#if CUDNN_VERSION >= 8000
283 284 285 286 287
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
288
      PADDLE_ENFORCE_GPU_SUCCESS(
289
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
290
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
291 292 293
              cudnn_output_desc, kNUM_CUDNN_FWD_ALGS, &perf_count,
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
294
      PADDLE_ENFORCE_GPU_SUCCESS(
295 296 297 298 299
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, algo, &workspace_size_in_bytes));
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
300
#else
301
      PADDLE_ENFORCE_GPU_SUCCESS(
302 303 304 305 306 307
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
#endif
Q
qingqing01 已提交
308
    } else {
309 310
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
311 312 313
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
314
        auto cudnn_find_func = [&](void* cudnn_workspace) {
315
          PADDLE_ENFORCE_GPU_SUCCESS(
C
chengduo 已提交
316 317 318 319
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                  handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                  filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
                  kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
320
                  fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
C
chengduo 已提交
321
        };
322
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
323 324 325 326 327 328 329 330
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
331
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
332
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
333 334 335
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
336
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
337 338 339 340
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
341 342
        algo = algo_cache.GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
                                       search_func);
Q
qingqing01 已提交
343
      } else {
344
        auto dtype = platform::CudnnDataType<T>::type;
345
        algo = algo_cache.GetAlgorithm(x_dims, f_dims, strides, paddings,
346
                                       dilations, 0, dtype, search_func);
Q
qingqing01 已提交
347 348 349 350
      }
      VLOG(3) << "choose algo " << algo;
    }

351
    PADDLE_ENFORCE_GPU_SUCCESS(
352 353
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
354
            cudnn_output_desc, algo, &workspace_size_in_bytes));
355 356 357 358
    PADDLE_ENFORCE_LE(
        workspace_size_in_bytes, workspace_size_limit,
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
359
            "to be less than the limit. But received: the actual workspace "
360 361
            "size = %d, limit = %d.",
            workspace_size_in_bytes, workspace_size_limit));
Q
qingqing01 已提交
362

N
nhzlx 已提交
363
    if ((activation == "identity") && (!residual)) {
364 365 366 367 368 369
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
370
      auto cudnn_func = [&](void* cudnn_workspace) {
371
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnConvolutionForward(
372 373 374
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, cudnn_workspace,
            workspace_size_in_bytes, &beta, cudnn_output_desc, output_data));
C
chengduo 已提交
375 376
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
377
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnAddTensor(
378 379
          handle, &alpha, cudnn_bias_desc, bias_data, &alpha, cudnn_output_desc,
          output_data));
380 381 382 383 384 385 386
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
387
      auto cudnn_func = [&](void* cudnn_workspace) {
388
        PADDLE_ENFORCE_GPU_SUCCESS(
389 390 391 392 393
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha1, cudnn_input_desc, input_data,
                cudnn_filter_desc, filter_data, cudnn_conv_desc, algo,
                cudnn_workspace, workspace_size_in_bytes, &alpha2,
                cudnn_output_desc, residual_data, cudnn_bias_desc, bias_data,
394
                cudnn_act_desc, cudnn_output_desc, output_data));
C
chengduo 已提交
395 396
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
397
    }
R
ronnywang 已提交
398
#endif
Q
qingqing01 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
417
        PADDLE_THROW(platform::errors::Unimplemented(
418
            "Input with batch size greater than 1 is unsupported. The received "
419
            "batch size is %d, Input's shape is [%s].",
420
            x_dims[0], phi::make_ddim(x_dims)));
Q
qingqing01 已提交
421 422
      }
    }
Q
qingqing01 已提交
423 424
  }
};
D
Dang Qingqing 已提交
425
#endif
Q
qingqing01 已提交
426 427 428 429 430

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
ronnywang 已提交
431
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
432 433
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
                        ops::CUDNNConvFusionOpKernel<double>);
D
Dang Qingqing 已提交
434
#endif
R
ronnywang 已提交
435 436 437
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>);
#endif