test_imperative_mnist.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
M
minqiyang 已提交
26 27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable
28
from test_imperative_base import new_program_scope
29 30
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
from paddle.fluid.dygraph.jit import TracedLayer
31 32


M
minqiyang 已提交
33
class SimpleImgConvPool(fluid.dygraph.Layer):
M
minqiyang 已提交
34
    def __init__(self,
35
                 num_channels,
M
minqiyang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
51
        super(SimpleImgConvPool, self).__init__()
M
minqiyang 已提交
52 53

        self._conv2d = Conv2D(
54
            num_channels=num_channels,
M
minqiyang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
72

M
minqiyang 已提交
73
    def forward(self, inputs):
M
minqiyang 已提交
74 75 76
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
77 78


M
minqiyang 已提交
79
class MNIST(fluid.dygraph.Layer):
M
minqiyang 已提交
80 81
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)
82

M
minqiyang 已提交
83
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
84
            1, 20, 5, 2, 2, act="relu")
85

M
minqiyang 已提交
86
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
87
            20, 50, 5, 2, 2, act="relu")
M
minqiyang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
107 108 109 110 111 112 113 114 115
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

M
minqiyang 已提交
116
    def test_mnist_float32(self):
117
        seed = 90
M
minqiyang 已提交
118
        epoch_num = 1
119 120 121
        batch_size = 128
        batch_num = 50

122 123
        traced_layer = None

M
minqiyang 已提交
124
        with fluid.dygraph.guard():
125 126 127
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
128 129
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
130 131 132 133 134 135 136 137

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
138

M
minqiyang 已提交
139
            mnist.train()
140
            dy_param_init_value = {}
141

142 143
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
144
            for epoch in range(epoch_num):
145 146 147 148 149 150
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
151
                    label.stop_gradient = True
M
minqiyang 已提交
152

153
                    if batch_id % 10 == 0:
154 155 156 157 158 159 160
                        cost, traced_layer = TracedLayer.trace(
                            mnist, inputs=img)
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
                            './infer_imperative_mnist')
161 162 163
                    else:
                        cost = mnist(img)

164 165 166 167
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
168 169 170
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
171
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
172 173 174

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
175
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
176

L
lujun 已提交
177
                    avg_loss.backward()
M
minqiyang 已提交
178 179 180 181 182
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
183
                        dy_param_value[param.name] = param.numpy()
184 185 186 187 188 189 190 191

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

M
minqiyang 已提交
192 193
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
194
            train_reader = paddle.batch(
195 196 197
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True)
198 199 200 201 202

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
203 204 205
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
206 207 208 209

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
210
            for param in mnist.parameters():
211 212 213 214 215 216 217 218
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
219 220
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
221 222
                    if batch_id >= batch_num:
                        break
M
minqiyang 已提交
223 224 225 226
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
227 228
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])
M
minqiyang 已提交
229 230 231

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
232 233 234 235

                    if traced_layer is not None:
                        traced_layer([static_x_data])

M
minqiyang 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
249 250

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
251 252 253 254
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

255
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
256
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
257 258 259 260


if __name__ == '__main__':
    unittest.main()