adam_op.cc 11.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16
#include "paddle/fluid/framework/op_version_registry.h"
17 18 19 20

namespace paddle {
namespace operators {

D
dzhwinter 已提交
21
using Tensor = framework::Tensor;
22

23
void AdamOp::InferShape(framework::InferShapeContext *ctx) const {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Param"), true,
      platform::errors::NotFound("Input(Param) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Grad"), true,
      platform::errors::NotFound("Input(Grad) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment1"), true,
                    platform::errors::NotFound(
                        "Input(Moment1) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment2"), true,
                    platform::errors::NotFound(
                        "Input(Moment2) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("LearningRate"), true,
                    platform::errors::NotFound(
                        "Input(LearningRate) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta1Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta1Pow) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta2Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta2Pow) of AdamOp should not be null."));

  PADDLE_ENFORCE_EQ(ctx->HasOutput("ParamOut"), true,
                    platform::errors::NotFound(
                        "Output(ParamOut) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment1Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment1Out) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment2Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment2Out) of AdamOp should not be null."));
55

Y
Yibing Liu 已提交
56
  auto lr_dims = ctx->GetInputDim("LearningRate");
A
Aurelius84 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70
  PADDLE_ENFORCE_NE(
      framework::product(lr_dims), 0,
      platform::errors::InvalidArgument(
          "The number of LearningRate shall not be 0, but received %d. Maybe "
          "the Input variable LearningRate has not "
          "been initialized. You may need to confirm "
          "if you put exe.run(startup_program) "
          "after optimizer.minimize function.",
          framework::product(lr_dims)));
  PADDLE_ENFORCE_EQ(
      framework::product(lr_dims), 1,
      platform::errors::InvalidArgument(
          "Learning rate should have 1 dimension, but received %d",
          framework::product(lr_dims)));
Y
Yibing Liu 已提交
71
  auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
A
Aurelius84 已提交
72 73 74 75 76 77
  VLOG(3) << "dims of Beta1Pow : [" << beta1_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta1_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta1 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta1_pow_dims)));
Y
Yibing Liu 已提交
78
  auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
A
Aurelius84 已提交
79 80 81 82 83 84
  VLOG(3) << "dims of Beta2Pow : [" << beta2_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta2_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta2 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta2_pow_dims)));
85

Y
Yibing Liu 已提交
86 87 88
  auto param_dims = ctx->GetInputDim("Param");
  if (ctx->GetInputsVarType("Grad")[0] ==
      framework::proto::VarType::LOD_TENSOR) {
89
    PADDLE_ENFORCE_EQ(
Y
Yibing Liu 已提交
90
        param_dims, ctx->GetInputDim("Grad"),
A
Aurelius84 已提交
91 92 93 94
        platform::errors::InvalidArgument(
            "Param and Grad input of AdamOp should have same dimension. But "
            "received Param dims: [%s], Grad dims: [%s].",
            param_dims, ctx->GetInputDim("Grad")));
95
  }
Y
Yibing Liu 已提交
96 97
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment1"),
A
Aurelius84 已提交
98 99 100 101
      platform::errors::InvalidArgument(
          "Param and Moment1 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment1 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment1")));
Y
Yibing Liu 已提交
102 103
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment2"),
A
Aurelius84 已提交
104 105 106 107
      platform::errors::InvalidArgument(
          "Param and Moment2 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment2 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment2")));
Y
Yibing Liu 已提交
108 109 110 111

  ctx->SetOutputDim("ParamOut", param_dims);
  ctx->SetOutputDim("Moment1Out", param_dims);
  ctx->SetOutputDim("Moment2Out", param_dims);
A
Aurelius84 已提交
112 113
  ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims);
  ctx->SetOutputDim("Beta2PowOut", beta2_pow_dims);
Y
Yibing Liu 已提交
114 115 116
}

framework::OpKernelType AdamOp::GetExpectedKernelType(
117
    const framework::ExecutionContext &ctx) const {
118
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Param");
Y
Yibing Liu 已提交
119 120
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
121

122 123 124 125 126 127 128 129 130 131 132
framework::OpKernelType AdamOp::GetKernelTypeForVar(
    const std::string &var_name, const framework::Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
  if (var_name == "Beta1Pow" || var_name == "Beta2Pow") {
    return expected_kernel_type;
  } else {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
}

133 134
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
135
  void Make() override {
136 137 138 139 140 141 142 143
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

144 145 146 147 148 149 150 151 152 153
    AddInput("Beta1Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta1, this has a higher priority than attr(beta1), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
    AddInput("Beta2Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta2, this has a higher priority than attr(beta2), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
154 155 156 157 158
    AddInput("EpsilonTensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as epsilon, this has a higher priority than attr(epsilon), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
159
    AddInput("MasterParam", "FP32 master weight for AMP.").AsDispensable();
160 161
    AddInput("SkipUpdate", "(Tensor<bool>, optional), Skip the update or not.")
        .AsDispensable();
162

163 164 165
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
A
Aurelius84 已提交
166 167
    AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
    AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
168 169 170 171
    AddOutput("MasterParamOut",
              "The updated FP32 master weight for AMP. "
              "It shared memory with Input(MasterParam).")
        .AsDispensable();
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
187
    AddAttr<bool>(
Q
Qiao Longfei 已提交
188
        "lazy_mode",
Q
Qiao Longfei 已提交
189 190 191
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
192 193 194 195 196 197
    AddAttr<int64_t>("min_row_size_to_use_multithread",
                     "(int64_t, default 0) "
                     "when not zero, if param row size is larger then "
                     "min_row_size_to_use_multithread and "
                     "inner_op_parallelism is larger then 0, sparse update "
                     "will run in multithread mode")
198
        .SetDefault(1000);
199 200 201 202
    AddAttr<bool>("multi_precision",
                  "(bool, default false) "
                  "Whether to use multi-precision during weight updating.")
        .SetDefault(false);
203 204 205 206 207 208 209
    // TODO(zhiqiu): We could set Beta1PowOut and Beta2PowOut
    // as dispensable since they are not used when use_global_beta_pow is true.
    AddAttr<bool>("use_global_beta_pow",
                  "(bool, default false) "
                  "Whether to use global beta_pow for whole model instead of "
                  "creating beta_pow for each parameter.")
        .SetDefault(false);
210 211

    AddComment(R"DOC(
212
Adam Optimizer.
213 214

This implements the Adam optimizer from Section 2 of the Adam
215 216 217
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
218 219 220

Adam updates:

221 222 223 224 225 226 227
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
228 229 230 231 232 233 234 235 236

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
Q
QI JUN 已提交
237 238 239
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);
240 241 242 243 244 245 246 247 248

REGISTER_OP_VERSION(adam)
    .AddCheckpoint(
        R"ROC(
      Upgrade adam add 1 attribute [multi_precision].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "multi_precision",
            "(bool) Whether to use multi-precision during weight updating.",
249 250 251 252 253 254 255 256 257
            false))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 dispensable input [EpsilonTensor].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "EpsilonTensor",
            "If provided, Adam will use this as epsilon, "
            "this has a higher priority than attr(epsilon). "
258 259 260 261 262 263 264 265 266 267 268 269
            "For better performance in npu kernel. "))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 attribute [use_global_beta_pow].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_global_beta_pow",
            "If true, Adam will use global beta_pow for whole model "
            "instead of creating beta_pow for each parameter."
            "In that case, the outputs(Beta1PowOut, Beta2PowOut) will not be "
            "used in adam op, "
            "and beta_pow will be updated after all adam op in the model.",
270 271 272 273 274 275 276
            false))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 dispensable input [SkipUpdate].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "SkipUpdate", "If the value is true, Adam will skip the update."));