sequence_pooling.cu 13.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <string>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/cuda_helper.h"
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {

#define FLT_MAX __FLT_MAX__

template <typename T>
D
dzhwinter 已提交
27 28 29 30 31 32 33 34 35 36 37 38
struct MaxPoolFunctor {
  HOSTDEVICE void operator()(const T* input, const size_t start,
                             const size_t end, const size_t item_dim, T* output,
                             int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      T max_val = static_cast<T>(-FLT_MAX);
      int max_index = -1;
      for (int i = start; i < end; ++i) {
        if (max_val < input[item_dim * i + tid]) {
          max_val = input[item_dim * i + tid];
          max_index = i;
        }
39
      }
D
dzhwinter 已提交
40 41
      output[tid] = max_val;
      index[tid] = max_index;
42 43
    }
  }
D
dzhwinter 已提交
44
};
45 46

template <typename T>
D
dzhwinter 已提交
47 48 49 50 51 52 53 54 55 56 57
struct AvgPoolFunctor {
  HOSTDEVICE void operator()(const T* input, const size_t start,
                             const size_t end, const size_t item_dim, T* output,
                             int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      T val = static_cast<T>(0);
      for (int i = start; i < end; ++i) {
        val += input[item_dim * i + tid];
      }
      // end, start is lod, so end - start != 0
      output[tid] = val / static_cast<T>(end - start);
58
    }
D
dzhwinter 已提交
59 60
  }
};
61

D
dzhwinter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75
template <typename T>
struct SumPoolFunctor {
  HOSTDEVICE void operator()(const T* input, const size_t start,
                             const size_t end, const size_t item_dim, T* output,
                             int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      T val = static_cast<T>(0);
      for (int i = start; i < end; ++i) {
        val += input[item_dim * i + tid];
      }
      output[tid] = val;
    }
  }
};
76

D
dzhwinter 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
template <typename T>
struct SqrtPoolFunctor {
  HOSTDEVICE void operator()(const T* input, const size_t start,
                             const size_t end, const size_t item_dim, T* output,
                             int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      T val = static_cast<T>(0);
      for (int i = start; i < end; ++i) {
        val += input[item_dim * i + tid];
      }
      // end, start is lod, so end - start != 0
      output[tid] = val / sqrt(end - start);
    }
  }
};
92

D
dzhwinter 已提交
93 94 95 96 97 98 99 100
template <typename T>
struct LastPoolFunctor {
  HOSTDEVICE void operator()(const T* input, const size_t start,
                             const size_t end, const size_t item_dim, T* output,
                             int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      output[tid] = input[item_dim * (end - 1) + tid];
    }
101 102 103 104
  }
};

template <typename T>
D
dzhwinter 已提交
105 106 107 108 109 110 111
struct FirstPoolFunctor {
  HOSTDEVICE void operator()(const T* input, const size_t start,
                             const size_t end, const size_t item_dim, T* output,
                             int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      output[tid] = input[item_dim * start + tid];
    }
112
  }
D
dzhwinter 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
};

template <typename T, typename Range_OP>
__global__ void sequence_pool_kernel(Range_OP op, const T* input,
                                     const size_t* lod, const size_t lod_size,
                                     const size_t item_dim, T* output,
                                     int* index) {
  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;
  size_t start = lod[bid];
  size_t end = lod[bid + 1];
  int* index_offset = nullptr;
  if (index != nullptr) {
    index_offset = &index[bid * item_dim];
  }
  op(input, start, end, item_dim, &output[bid * item_dim], index_offset);
129 130 131
}

template <typename T>
D
dzhwinter 已提交
132
class SequencePoolFunctor<platform::CUDADeviceContext, T> {
133
 public:
Q
QI JUN 已提交
134
  void operator()(const platform::CUDADeviceContext& context,
D
dzhwinter 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                  const std::string pooltype, const framework::LoDTensor& input,
                  framework::Tensor* output,
                  framework::Tensor* index = nullptr) {
    auto lod = input.lod()[0];
    const size_t item_dim = output->numel() / output->dims()[0];
    dim3 threads(1024, 1);
    dim3 grid(lod.size(), 1);
    if (pooltype == "MAX") {
      sequence_pool_kernel<
          T, MaxPoolFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          MaxPoolFunctor<T>(), input.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          output->mutable_data<T>(context.GetPlace()), index->data<int>());
    } else if (pooltype == "AVERAGE") {
      sequence_pool_kernel<
          T, AvgPoolFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          AvgPoolFunctor<T>(), input.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          output->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "SUM") {
      sequence_pool_kernel<
          T, SumPoolFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          SumPoolFunctor<T>(), input.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          output->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "SQRT") {
      sequence_pool_kernel<
          T, SqrtPoolFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          SqrtPoolFunctor<T>(), input.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          output->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "LAST") {
      sequence_pool_kernel<
          T, LastPoolFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          LastPoolFunctor<T>(), input.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          output->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "FIRST") {
      sequence_pool_kernel<
          T, FirstPoolFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          FirstPoolFunctor<T>(), input.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          output->mutable_data<T>(context.GetPlace()), nullptr);
    } else {
      PADDLE_THROW("unsupported pooling pooltype");
180
    }
D
dzhwinter 已提交
181 182
  }
};
183

D
dzhwinter 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
template <typename T>
struct MaxPoolGradFunctor {
  HOSTDEVICE void operator()(const T* out_grad, const size_t start,
                             const size_t end, const size_t item_dim,
                             T* in_grad, const int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      for (int i = start; i < end; ++i) {
        if (i == index[tid]) {
          in_grad[item_dim * i + tid] = out_grad[tid];
        } else {
          in_grad[item_dim * i + tid] = static_cast<T>(0);
        }
      }
    }
  }
};
200

D
dzhwinter 已提交
201 202 203 204 205 206 207 208 209 210 211 212
template <typename T>
struct AvgPoolGradFunctor {
  HOSTDEVICE void operator()(const T* out_grad, const size_t start,
                             const size_t end, const size_t item_dim,
                             T* in_grad, const int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      for (int i = start; i < end; ++i) {
        in_grad[item_dim * i + tid] = out_grad[tid] / (end - start);
      }
    }
  }
};
213

D
dzhwinter 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
template <typename T>
struct SumPoolGradFunctor {
  HOSTDEVICE void operator()(const T* out_grad, const size_t start,
                             const size_t end, const size_t item_dim,
                             T* in_grad, const int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      for (int i = start; i < end; ++i) {
        in_grad[item_dim * i + tid] = out_grad[tid];
      }
    }
  }
};

template <typename T>
struct SqrtPoolGradFunctor {
  HOSTDEVICE void operator()(const T* out_grad, const size_t start,
                             const size_t end, const size_t item_dim,
                             T* in_grad, const int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      for (int i = start; i < end; ++i) {
        in_grad[item_dim * i + tid] =
            out_grad[tid] / (sqrt(static_cast<T>(end - start)));
      }
    }
  }
};

template <typename T>
struct LastPoolGradFunctor {
  HOSTDEVICE void operator()(const T* out_grad, const size_t start,
                             const size_t end, const size_t item_dim,
                             T* in_grad, const int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      for (int i = start; i < end; ++i) {
        if (i == end - 1) {
          in_grad[item_dim * i + tid] = out_grad[tid];
        } else {
          in_grad[item_dim * i + tid] = static_cast<T>(0);
        }
      }
    }
  }
};

template <typename T>
struct FirstPoolGradFunctor {
  HOSTDEVICE void operator()(const T* out_grad, const size_t start,
                             const size_t end, const size_t item_dim,
                             T* in_grad, const int* index) {
    for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) {
      for (int i = start; i < end; ++i) {
        if (i == start) {
          in_grad[item_dim * i + tid] = out_grad[tid];
        } else {
          in_grad[item_dim * i + tid] = static_cast<T>(0);
        }
      }
    }
  }
};

template <typename T, typename Range_OP>
__global__ void sequence_pool_grad_kernel(Range_OP op, const T* out_grad,
                                          const size_t* lod,
                                          const size_t lod_size,
                                          const size_t item_dim, T* in_grad,
                                          const int* index) {
  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;
  size_t start = lod[bid];
  size_t end = lod[bid + 1];
  const int* index_offset = nullptr;
  if (index != nullptr) {
    index_offset = &index[bid * item_dim];
  }
  op(&out_grad[bid * item_dim], start, end, item_dim, in_grad, index_offset);
}

template <typename T>
class SequencePoolGradFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const std::string pooltype, const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    auto lod = in_grad->lod()[0];
    const size_t item_dim = in_grad->numel() / in_grad->dims()[0];
    dim3 threads(1024, 1);
    dim3 grid(lod.size(), 1);
    if (pooltype == "MAX") {
      sequence_pool_grad_kernel<
          T, MaxPoolGradFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          MaxPoolGradFunctor<T>(), out_grad.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          in_grad->mutable_data<T>(context.GetPlace()), index->data<int>());
    } else if (pooltype == "AVERAGE") {
      sequence_pool_grad_kernel<
          T, AvgPoolGradFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          AvgPoolGradFunctor<T>(), out_grad.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          in_grad->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "SUM") {
      sequence_pool_grad_kernel<
          T, SumPoolGradFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          SumPoolGradFunctor<T>(), out_grad.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          in_grad->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "SQRT") {
      sequence_pool_grad_kernel<
          T, SqrtPoolGradFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          SqrtPoolGradFunctor<T>(), out_grad.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          in_grad->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "LAST") {
      sequence_pool_grad_kernel<
          T, LastPoolGradFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          LastPoolGradFunctor<T>(), out_grad.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          in_grad->mutable_data<T>(context.GetPlace()), nullptr);
    } else if (pooltype == "FIRST") {
      sequence_pool_grad_kernel<
          T, FirstPoolGradFunctor<T>><<<grid, threads, 0, context.stream()>>>(
          FirstPoolGradFunctor<T>(), out_grad.data<T>(),
          lod.CUDAData(context.GetPlace()), lod.size(), item_dim,
          in_grad->mutable_data<T>(context.GetPlace()), nullptr);

    } else {
      PADDLE_THROW("unsupported pooling pooltype");
    }
344 345 346
  }
};

D
dzhwinter 已提交
347 348 349 350 351
// sequence pooling
template class SequencePoolFunctor<platform::CUDADeviceContext, float>;
template class SequencePoolFunctor<platform::CUDADeviceContext, double>;
template class SequencePoolGradFunctor<platform::CUDADeviceContext, float>;
template class SequencePoolGradFunctor<platform::CUDADeviceContext, double>;
352 353 354 355

}  // namespace math
}  // namespace operators
}  // namespace paddle