lookup_table_op.cu 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cuda_helper.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
26
__global__ void LookupTable(T* output, const T* table, const int64_t* ids,
27 28
                            const int64_t N, const int64_t K, const int64_t D,
                            const int64_t padding_idx) {
29
  int idx = threadIdx.x;
30
  int idy = blockIdx.x + threadIdx.y * GridDimX;
31 32

  while (idy < K) {
33
    int64_t id = ids[idy];
34 35
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
36 37
    T* out = output + idy * D;
    const T* tab = table + id * D;
38
    for (int i = idx; i < D; i += BlockDimX) {
39
      if (PaddingFlag) {
40
        if (id == padding_idx)
41 42 43 44 45 46
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
47
    }
48
    idy += BlockDimY * GridDimX;
49 50 51
  }
}

52
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
53 54 55
__global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
                                const int64_t N, const int64_t K,
                                const int64_t D) {
56
  int idx = threadIdx.x;
57
  int idy = blockIdx.x + threadIdx.y * GridDimX;
58 59 60 61 62

  while (idy < K) {
    int id = ids[idy];
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
63 64
    const T* out = output + idy * D;
    T* tab = table + id * D;
65
    for (int i = idx; i < D; i += BlockDimX) {
D
dangqingqing 已提交
66
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
67
    }
68
    idy += BlockDimY * GridDimX;
69 70 71 72
  }
}

template <typename T>
Y
Yu Yang 已提交
73
class LookupTableCUDAKernel : public framework::OpKernel<T> {
74 75
 public:
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
76
    auto* table_t = context.Input<LoDTensor>("W");
77
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
C
chengduoZH 已提交
78 79
    auto* ids_var = context.InputVar("Ids");
    Tensor* output_t = context.Output<Tensor>("Out");
C
chengduoZH 已提交
80 81 82

    int64_t* ids;
    int64_t K;
83

C
chengduoZH 已提交
84 85 86 87
    // The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
    // is LoDTensor, this tensor contains the ids to be looked up in W;
    // when Ids's type is SelectedRows, the rows of Ids contains the
    // ids to be looked up in W.
88
    if (ids_var->IsType<framework::LoDTensor>()) {
C
chengduoZH 已提交
89 90 91
      auto* ids_t = context.Input<LoDTensor>("Ids");
      ids = const_cast<int64_t*>(ids_t->data<int64_t>());
      K = ids_t->numel();
92 93
    } else if (ids_var->IsType<framework::SelectedRows>()) {
      auto* ids_t = context.Input<framework::SelectedRows>("Ids");
C
chengduoZH 已提交
94 95 96 97 98 99
      ids = const_cast<int64_t*>(ids_t->rows().CUDAData(context.GetPlace()));
      K = ids_t->rows().size();
      output_t->Resize({K, table_t->dims()[1]});
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }
100 101 102

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
F
fengjiayi 已提交
103 104
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
105 106 107

    dim3 threads(128, 8);
    dim3 grids(8, 1);
108 109 110 111 112 113 114 115 116 117 118

    if (padding_idx == -1)
      LookupTable<
          T, 128, 8, 8,
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
    else
      LookupTable<
          T, 128, 8, 8,
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
119 120 121 122
  }
};

template <typename T>
Y
Yu Yang 已提交
123
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
124 125
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Q
QI JUN 已提交
126 127
    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
128
    bool is_sparse = context.Attr<bool>("is_sparse");
129 130
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
131
    if (is_sparse) {
F
fengjiayi 已提交
132 133 134
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
135 136 137 138 139
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

Q
QI JUN 已提交
140
      auto stream = dev_ctx.stream();
141 142 143
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_dim[0]);
D
dzhwinter 已提交
144
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
145

Y
Yu Yang 已提交
146 147 148
      // TODO(yuyang18): Strange code here.
      memory::Copy(platform::CPUPlace(),
                   new_rows.CUDAMutableData(context.GetPlace()), gpu_place,
D
dzhwinter 已提交
149
                   ids_data, ids_dim[0] * sizeof(int64_t), stream);
150 151 152 153 154 155 156 157 158 159 160

      d_table->set_rows(new_rows);

      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      auto* d_table_data = d_table_value->data<T>();
      auto* d_output_data = d_output->data<T>();
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
161
                   d_output->numel() * sizeof(T), stream);
162 163

    } else {
F
fengjiayi 已提交
164 165 166
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
167 168 169 170 171 172 173 174 175

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
      const int64_t* ids = ids_t->data<int64_t>();
      const T* d_output = d_output_t->data<T>();
      T* d_table = d_table_t->mutable_data<T>(context.GetPlace());

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
Q
QI JUN 已提交
176
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
177 178 179

      dim3 threads(128, 8);
      dim3 grids(8, 1);
Q
QI JUN 已提交
180
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
typhoonzero 已提交
181
          d_table, d_output, ids, N, K, D);
182
    }
183 184 185 186 187 188 189
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
190 191 192 193 194
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
                        ops::LookupTableCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
                        ops::LookupTableGradCUDAKernel<float>,
                        ops::LookupTableGradCUDAKernel<double>);