conv_mkldnn_op.cc 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

A
Adam 已提交
32 33
inline void GetWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                         int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
34
  if (groups > 1) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
Y
Yihua Xu 已提交
60 61 62
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
78 79 80 81 82 83 84
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
85 86
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
87
      if (dst_dt != residual_dt) dst_dt = residual_dt;
88 89 90 91 92
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96 97 98
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
99 100 101 102 103
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
104
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
105 106 107
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
108
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
109 110 111 112 113 114 115 116
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
117 118
    }
  }
119

120
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
121 122
    const bool is_test = ctx.Attr<bool>("is_test");

123 124
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
125 126 127 128
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
129
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
130 131
    auto* output = ctx.Output<Tensor>("Output");

132 133
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
134
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
135 136 137 138
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
A
Adam 已提交
139
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

156
    if (bias) {
157 158
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
A
Adam 已提交
159
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
160 161 162 163
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
164
    }
165

A
Adam 已提交
166 167 168 169 170 171 172 173 174
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

175 176 177
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
178
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
179
    int groups = ctx.Attr<int>("groups");
180
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
181
    bool is_conv3d = strides.size() == 3U;
182

183 184 185 186 187 188
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
189
    auto ksize = framework::vectorize(filter_data_dims);
190 191 192 193

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
194 195
    std::vector<primitive> pipeline;

196
    PADDLE_ENFORCE(
197 198 199 200
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
201 202 203 204 205
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

A
Adam 已提交
206 207
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());
208
    int g = std::max(groups, 1);
A
Adam 已提交
209

210
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
211 212

    auto dst_tz = paddle::framework::vectorize(output->dims());
213

214
    // Get unique name for storing MKLDNN primitives
215
    const std::string key = platform::CreateKey(
H
hong 已提交
216
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
217

218
    auto src_format = input->format();
219
    MKLDNNMemoryFormat weights_format =
220 221 222 223 224 225
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
226 227 228 229 230

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
231 232 233 234
    // TODO(jczaja): This is workaround to make grad op UT's numerical
    // gradient computation proper as this op is called directly without
    // fetch op following it , so numercial grad is computed (in python)
    // using block formats which will give wrong results
235 236
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
237 238
        is_test ? MKLDNNMemoryFormat::any
                : platform::data_format_to_memory_format(data_format);
239

240
    weights_format = MKLDNNMemoryFormat::any;
241
    // Check the format for user's special output
242
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
243 244 245 246
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
247 248
    }

249
    auto src_md = platform::MKLDNNMemDesc(
250
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
251
    auto weights_md = platform::MKLDNNMemDesc(
252
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
A
Adam 已提交
253
    std::vector<int64_t> bias_tz;
254
    auto dst_md = platform::MKLDNNMemDesc(
255
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
256

257 258
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

259
    // create a conv primitive descriptor and save it for usage in backward
260
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
261 262
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
263
    if (bias) {
A
Adam 已提交
264
      bias_tz = paddle::framework::vectorize(bias->dims());
265
      auto bias_md = platform::MKLDNNMemDesc(
266
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
267
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
268
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
269
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
270
          fwd_prop_kind);
271
    } else {
272 273
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
274 275
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
276
    }
277

278
    // create mkldnn memory from input tensors (data/weights)
279 280
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
281
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
282
        user_weights_md, to_void_cast<T>(filter_data));
283

284 285 286 287 288
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
289

290
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
291

292
    if (fuse_residual_conn) {
293 294
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
295

296 297
      PADDLE_ENFORCE_NE(
          residual_param_data, nullptr,
298 299 300 301
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
302

303
      if (residual_param->format() != handler.GetDstFormat()) {
304 305
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
306
        auto residual_data_tz =
A
Adam 已提交
307
            paddle::framework::vectorize(residual_param->dims());
308 309 310 311 312
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
313
        user_residual_memory_p = handler.AcquireResidualDataMemory(
314
            user_residual_md, to_void_cast<T>(residual_param_data));
315 316 317

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
318
      } else {
319 320 321 322 323
        // Changing ShareDataWith to TensorCopy results in performance drop
        // on ResNet architectures
        // (https://github.com/PaddlePaddle/Paddle/issues/22964)
        output->ShareDataWith(*residual_param);
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
324 325
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
326
      }
327
    } else {
328 329
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
330 331
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
332
    }
333

A
Adam 已提交
334 335 336
    auto conv_p = handler.AcquireConvolution();

    mkldnn::stream astream(mkldnn_engine);
337 338 339
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
340
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
A
Adam 已提交
341
      auto user_bias_memory_p =
342 343
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

A
Adam 已提交
344
      auto bias_memory_p =
345
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
A
Adam 已提交
346 347 348 349 350 351

      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_BIAS, *bias_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});

352
    } else {
A
Adam 已提交
353 354 355
      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
356
    }
A
Adam 已提交
357
    astream.wait();
358

359 360
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
361
  }
362
  template <typename T_out>
363 364 365 366 367 368 369 370 371 372
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

373 374
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
375
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
376 377 378 379 380 381 382 383 384
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

385
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
386
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
387 388
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
389

390 391
    const T* input_data = input->data<T>();

A
Adam 已提交
392
    auto src_tz = paddle::framework::vectorize(input->dims());
393

X
xiaolil1 已提交
394 395
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
396

L
lidanqing 已提交
397
    std::string key = platform::CreateKey(
H
hong 已提交
398
        src_tz, src_dt, ctx.InputName("Input") + ctx.InputName("Filter"));
399

400 401
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
402 403 404
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
405
    std::shared_ptr<mkldnn::memory> dst_memory_p;
406
    std::vector<primitive> pipeline;
407
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
408 409 410 411 412 413 414 415 416
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
    if (platform::get_cur_mkldnn_session_id() ==
        platform::kMKLDNNSessionID_Default) {
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
417
    }
418

419 420 421
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
A
Adam 已提交
422 423
    auto weights_key = key + key_tid + "@weights_mem_p";
    auto bias_key = key + key_tid + "@bias_mem_p";
424
    auto user_src_key = key + key_tid + "@user_src_mem_p";
A
Adam 已提交
425
    auto user_residual_key = key + key_tid + "@user_residual_data_mem_p";
426 427 428 429 430 431
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

A
Adam 已提交
432 433
    mkldnn::stream astream(mkldnn_engine);

434
    if (conv_p == nullptr || !is_test) {
435 436 437 438 439 440 441 442
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

      PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Filter tensor");
A
Adam 已提交
443
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
                        "Wrong format set for Filter tensor");

      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
          "residual fusion does not support force output with fp32");

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
        PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                          "Wrong layout set for Bias tensor");
A
Adam 已提交
462
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
463 464 465 466 467 468
                          "Wrong format set for Bias tensor");

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          "Bias must only have 1 dimension, i.e. X");
      }

A
Adam 已提交
469 470 471 472 473 474 475 476 477 478
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

479 480
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
481 482 483 484 485 486

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
                        "int8 does not support conv3d currently");

487 488 489 490 491 492
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
493
      auto ksize = framework::vectorize(filter_data_dims);
494 495 496 497

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

498
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
499
      auto weights_tz = paddle::framework::vectorize(filter->dims());
500 501 502
      int g = std::max(groups, 1);

      GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
503
      auto dst_tz = paddle::framework::vectorize(output->dims());
504 505 506 507 508 509 510 511

      PADDLE_ENFORCE_EQ(
          is_conv3d
              ? dilations.size() == 3 && dilations[0] == 1 &&
                    dilations[1] == 1 && dilations[2] == 1
              : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          true, "dilation in convolution is not implemented yet");

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
540

541 542 543 544 545 546 547 548 549 550
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
551
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
552

A
Adam 已提交
553
      std::vector<int64_t> bias_tz;
554 555 556 557 558 559 560 561 562 563 564 565 566

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
567

568
      if (bias) {
A
Adam 已提交
569
        bias_tz = paddle::framework::vectorize(bias->dims());
570 571 572 573 574 575 576 577 578 579 580 581
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
609
              paddle::framework::vectorize(residual_param->dims());
610 611 612 613 614 615
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
616
          output->ShareDataWith(*residual_param);
617 618 619 620 621 622 623 624
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
625

626 627
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
628
      conv_p = handler->AcquireConvolution();
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
649 650 651 652
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
653
      } else {
A
Adam 已提交
654 655 656
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
657 658
      }
    } else {
A
Adam 已提交
659
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
660 661 662 663 664 665 666
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
A
Adam 已提交
667 668 669
        src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                      *src_memory_p);
        astream.wait();
670 671 672
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
673 674
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
675 676 677 678 679 680 681 682 683
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
684

685 686
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
687
        output->ShareDataWith(*residual_param);
688 689 690
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
691
      }
692
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
693

A
Adam 已提交
694
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
695 696
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
        residual_reorder_p->execute(astream, *user_residual_data_p,
                                    *dst_memory_p);
        astream.wait();
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
716 717
      }
    }
A
Adam 已提交
718
    astream.wait();
719
    if (need_s8_to_u8) {
X
xiaolil1 已提交
720 721
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
722 723 724
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
725 726 727
};

template <typename T>
728
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
729 730 731 732 733
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

734 735
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
736 737 738 739 740 741 742 743 744
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

745 746
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
747
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
748
                      "Wrong format set for Input tensor");
749

750 751
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
A
Adam 已提交
752
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
753 754 755 756
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
A
Adam 已提交
757
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
758 759 760 761
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
762 763
        "is_test attribute should be set to False in training phase.");

764 765
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
766 767 768 769 770 771 772 773 774
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

775
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
776

777
    int groups = ctx.Attr<int>("groups");
778

779
    bool is_conv3d = strides.size() == 3U;
780 781 782 783 784 785
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

786 787 788 789 790 791
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
792
    auto ksize = framework::vectorize(filter_data_dims);
793 794 795 796

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
797 798 799
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

800
    int g = std::max(groups, 1);
801
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
802 803
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

804
    auto src_format = input->format();
805
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
806
        GetWeightsFormat(filter->format(), g, is_conv3d);
807

808
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
809
    // as well as attributes of primitive to be created
810
    // This name will be used as key when saving info into device context
811
    const std::string key = platform::CreateKey(
H
hong 已提交
812
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
813 814

    const std::string key_conv_pd = key + "@conv_pd";
815
    std::vector<primitive> pipeline;
816

817 818
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
819
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
820
    auto user_weights_md = platform::MKLDNNMemDesc(
821
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
822 823
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
824 825 826 827 828

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
829 830 831 832 833 834 835 836 837

    // TODO(jczaja): Once GRAD NHWC is working then format 'any'
    // should be used exclusively. But till forward pass enforce
    // NCHW for training we need to have NCHW here as well
    // to avoid performance degradation in relu_grad and pool2d_grad
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

838
    weights_format = MKLDNNMemoryFormat::any;
839 840 841 842 843 844 845
    // Check the format for user's special output
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
    }
846

847
    auto src_md = platform::MKLDNNMemDesc(
848
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
849
    auto diff_src_md = platform::MKLDNNMemDesc(
850
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
851
    auto weights_md = platform::MKLDNNMemDesc(
852
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
853
    auto diff_weights_md = platform::MKLDNNMemDesc(
854
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
855
    auto diff_dst_md = platform::MKLDNNMemDesc(
856
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
857
    // Retrieve conv_pd from device context
858 859 860
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
861 862
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
                      "Fail to find conv_pd in device context");
863

864 865
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

866 867
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
868 869 870
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

871 872 873 874 875 876
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
877 878 879
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

880 881 882 883
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
884 885 886
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
887 888 889 890 891 892 893 894

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
A
Adam 已提交
895
    mkldnn::stream astream(mkldnn_engine);
896
    if (filter_grad) {
897 898
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
899

900 901 902 903
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

904
      const size_t size = handler.GetDiffWeightsMemorySize();
905
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
906

907 908 909 910
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

A
Adam 已提交
911
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
912

A
Adam 已提交
913 914 915 916 917 918
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
919

920 921
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
922 923
    }
    if (input_grad) {
924 925 926 927 928 929 930
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

931
      const size_t size = handler.GetDiffSourceMemorySize();
932
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
933

934 935 936
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
937
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
938

A
Adam 已提交
939 940 941 942 943
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
944

945 946
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
947
    }
X
xiaolil1 已提交
948
  }
949
};
950

951 952 953 954 955
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
956 957 958
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
959
                                    ops::ConvMKLDNNOpKernel<float, float>);
960 961 962

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
963
                                    ops::kConvMKLDNNINT8,
964
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
965 966 967

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
968
                                    ops::kConvMKLDNNINT8,
969
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
970 971 972 973 974

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
975 976 977 978

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
979
                                    ops::ConvMKLDNNOpKernel<float, float>);
980 981 982 983 984

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);