device_context.cc 17.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
#ifdef PADDLE_WITH_CUDA
  if (size == 0 || !platform::is_gpu_place(place)) {
    return Alloc(place, size);
  }
  auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto& desired_dev_ctx =
      static_cast<const platform::CUDADeviceContext&>(dev_ctx);
  if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
    return Alloc(place, size);
  } else {
    return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
        desired_dev_ctx, size);
  }
#else
  return Alloc(place, size);
#endif
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
54 55 56
namespace paddle {
namespace platform {

D
dzhwinter 已提交
57 58
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
59
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
60 61 62
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
63 64 65 66
        "Place %s is not supported, Please check that your paddle compiles "
        "with WITH_GPU "
        "option or check that your train process hold the correct gpu_id if "
        "you use Executor",
M
minqiyang 已提交
67
        place);
D
dzhwinter 已提交
68
  }
69
  return it->second.get().get();
D
dzhwinter 已提交
70 71
}

72 73 74 75 76 77 78 79 80 81 82
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
83 84
}

D
dzhwinter 已提交
85 86 87
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
88
  std::set<Place> set;
Y
Yu Yang 已提交
89 90 91 92 93
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
94
#ifdef PADDLE_WITH_MKLDNN
95
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
96
#else
97
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
98
#endif
Y
Yu Yang 已提交
99
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
100
#ifdef PADDLE_WITH_CUDA
101
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
102 103
#else
      PADDLE_THROW(
D
dzhwinter 已提交
104
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
105
          "option");
C
chengduoZH 已提交
106 107 108
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
109 110
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
111 112 113 114
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
115 116 117 118 119
#endif
    }
  }
}

120 121 122 123
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
124
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
125 126 127 128 129 130 131
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
132
Place CPUDeviceContext::GetPlace() const { return place_; }
133

134
#ifdef PADDLE_WITH_CUDA
135

Q
init  
qijun 已提交
136 137 138 139 140 141 142
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
143
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
156 157 158
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
159 160 161
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
162
    void* retv = buf->ptr();
S
sneaxiy 已提交
163 164 165 166
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
167
    return retv;
Q
init  
qijun 已提交
168 169
  }

S
sneaxiy 已提交
170 171 172 173 174 175
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
189
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
190 191 192 193 194 195
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
196
  CUDAPlace place_;
Q
init  
qijun 已提交
197 198
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
199
  mutable void* scratch_;
Q
init  
qijun 已提交
200
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
201
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
202
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
203 204
};

205 206 207 208 209 210 211 212 213
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

214
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
215
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
216 217 218
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
219
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
220
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
221 222 223 224 225 226 227 228 229 230 231 232
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }
233

C
chengduo 已提交
234 235 236
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

237 238
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
239
                          << ", Driver API Version: " << driver_version_ / 1000
240
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
241 242 243
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
244 245 246
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
247
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
248 249 250

  {
    // Check CUDA/CUDNN version compatiblity
251 252 253 254
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
255 256 257 258 259 260 261 262 263 264 265
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
281
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
282
      PADDLE_ENFORCE_CUDA_SUCCESS(
283
          dynload::cudnnSetStream(cudnn_handle_, stream_));
284 285 286
    } else {
      cudnn_handle_ = nullptr;
    }
S
sneaxiy 已提交
287
  }
288 289

  callback_manager_.reset(new StreamCallbackManager(stream_));
290 291 292 293
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
294
  Wait();
S
sneaxiy 已提交
295
  WaitStreamCallback();
296 297 298 299 300 301
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
  eigen_stream_.reset();
  eigen_device_.reset();
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamDestroy(stream_));
  if (cudnn_handle_) {
302
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
303 304 305 306 307 308
  }
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
309 310
}

L
liaogang 已提交
311
Place CUDADeviceContext::GetPlace() const { return place_; }
312

313 314 315 316 317 318 319 320 321 322 323
void CUDADeviceContext::Wait() const {
  cudaError_t e_sync = cudaSuccess;
#if !defined(_WIN32)
  e_sync = cudaStreamSynchronize(stream_);
#else
  while (e_sync = cudaStreamQuery(stream_)) {
    if (e_sync == cudaErrorNotReady) continue;
    break;
  }
#endif

324
  PADDLE_ENFORCE_CUDA_SUCCESS(e_sync);
325
}
326

K
Kexin Zhao 已提交
327
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
328
  return compute_capability_;
K
Kexin Zhao 已提交
329 330
}

331
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
332
  return multi_process_ * max_threads_per_mp_;
333 334
}

335 336 337 338 339 340
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

341
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
342
  return eigen_device_.get();
343 344
}

345
bool CUDADeviceContext::tensor_core_available() const {
346
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
347 348
}

349 350 351 352
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

353
cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
354

S
sneaxiy 已提交
355
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
356
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
357
}
358

359
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
360

C
chengduoZH 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
375
#endif
Q
qijun 已提交
376

T
tensor-tang 已提交
377 378
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
379 380 381
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
382 383
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
384 385
}

S
Sylwester Fraczek 已提交
386
namespace {
387 388
// Current mkldnn session id.
thread_local size_t cur_mkldnn_session_id = kMKLDNNSessionID_Default;
389 390 391 392
// Current data input shape string.
// - For fixed-shape, it's a null string in default.
// - For dynamic-shape, it's user specific.
thread_local std::string cur_input_shape_str = "";
393 394 395
// the cache capacity of different input shapes for MKLDNN.
// Default 1 means fixed input shape, not dynamic shape.
thread_local int cur_input_shape_cache_capacity = 1;
396 397 398 399
// Recently registered data_format. This is needed to
// know for converting MKL-DNN Tensor to non MKL-DNN
thread_local paddle::framework::DataLayout cur_paddle_data_layout =
    paddle::framework::DataLayout::kNCHW;
400
}  // namespace
S
Sylwester Fraczek 已提交
401

402 403
void set_cur_mkldnn_session_id(size_t sid) { cur_mkldnn_session_id = sid; }
size_t get_cur_mkldnn_session_id(void) { return cur_mkldnn_session_id; }
404 405 406
void set_cur_input_shape_str(std::string input_shape_str) {
  cur_input_shape_str = input_shape_str;
}
407 408 409
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity) {
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
410

411 412 413 414 415 416 417 418
void set_cur_paddle_data_layout(framework::DataLayout dl) {
  cur_paddle_data_layout = dl;
}

framework::DataLayout get_cur_paddle_data_layout(void) {
  return cur_paddle_data_layout;
}

419 420
void MKLDNNDeviceContext::ResetBlobMap() const { p_blobmap_->clear(); }

421 422 423 424 425 426 427 428 429 430 431
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
  std::lock_guard<std::mutex> lock(*p_mutex_);
  BlobMap* pMap = p_blobmap_.get();
  auto map_it = pMap->find(cur_mkldnn_session_id);
  if (map_it == pMap->end()) {
    LOG(FATAL) << "MKLDNNDeviceContext don't find cur_mkldnn_session_id : "
               << cur_mkldnn_session_id;
  }
  return map_it->second->size();
}

432 433
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
434
  BlobMap* pMap = p_blobmap_.get();
435
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
436 437
  std::shared_ptr<KeyBlob> pBlob = nullptr;

438
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
439

440
  std::lock_guard<std::mutex> lock(*p_mutex_);
T
tensor-tang 已提交
441

442 443
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
444 445 446

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
447
    sBlob = std::shared_ptr<ShapeBlob>(new ShapeBlob());
448 449
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
450
  } else {
451
    sBlob = map_it->second;
452
  }
T
tensor-tang 已提交
453

454 455
  // Find KeyBlob for current input shape
  auto key_it = sBlob->find(cur_input_shape_str);
456

457
  if (key_it == sBlob->end()) {
458 459
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
460 461
    if ((static_cast<size_t>(sid) == kMKLDNNSessionID_CacheClearing) &&
        sBlob->size() &&
462 463 464 465 466 467
        (sBlob->size() >=
         static_cast<size_t>(cur_input_shape_cache_capacity))) {
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
468 469
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*sBlob)[cur_input_shape_str] = pBlob;
470
  } else {
471
    pBlob = key_it->second;
472 473
  }

474 475 476 477 478 479 480
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
481
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
482
  // lock will be automatically released when out of scope
483
  return;
T
tensor-tang 已提交
484 485
}

486 487
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
488
  BlobMap* pMap = p_blobmap_.get();
489
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
490
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
491

492
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
493

494
  std::lock_guard<std::mutex> lock(*p_mutex_);
495

496 497
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
498
  if (map_it == pMap->end()) {
499
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
500 501 502 503 504 505 506
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
  auto sBlob_it = sBlob->find(cur_input_shape_str);
  if (sBlob_it == sBlob->end()) {
507
    VLOG(2) << "GetBlob: sid=" << cur_input_shape_str
508 509 510 511
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
512 513 514 515

  // Find Blob via name
  auto key_it = pBlob->find(name);

516
  if (key_it == pBlob->end()) {
517
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
518 519
    return nullptr;
  }
520

521
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
522 523
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
524 525 526 527
}

#endif

Q
qijun 已提交
528
}  // namespace platform
Q
qijun 已提交
529
}  // namespace paddle