while_op.cc 13.7 KB
Newer Older
Y
Yang Yang(Tony) 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14 15 16

#include <vector>
#include "paddle/framework/executor.h"
Y
Yang Yang(Tony) 已提交
17
#include "paddle/framework/lod_tensor_array.h"
Y
Yang Yang(Tony) 已提交
18 19
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
Y
Yang Yang(Tony) 已提交
20
#include "paddle/operators/detail/safe_ref.h"
Y
Yang Yang(Tony) 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

Y
Yang Yu 已提交
28 29 30 31 32 33
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
Y
Yang Yang(Tony) 已提交
34 35 36 37 38 39 40 41 42

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
43
           const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
44 45 46 47
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

D
dzhwinter 已提交
48
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
49
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
50

Y
Yang Yang(Tony) 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);

      executor.Run(*program, &current_scope, block->ID(),
                   false /*create_local_scope*/);
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
68
  WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yang Yang(Tony) 已提交
69
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yang Yu 已提交
70
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
71 72 73 74 75 76 77
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
78
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
79
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
80
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
81 82 83 84 85
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
86 87
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
Y
Yang Yang(Tony) 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
101
           const platform::Place &dev_place) const override {
102 103 104
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
105
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
106
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
107 108 109 110 111
    auto *program = block->Program();

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
112 113 114 115 116 117
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
118 119
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
Y
Yang Yang(Tony) 已提交
120 121 122 123 124 125 126
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
127 128
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
129 130 131 132 133 134
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
Y
Yang Yang(Tony) 已提交
135 136 137 138 139 140 141 142 143 144 145 146
        if (og_outside.Type().hash_code() ==
            typeid(framework::LoDTensor).hash_code()) {
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
        } else if (og_outside.Type().hash_code() ==
                   typeid(framework::LoDTensorArray).hash_code()) {
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
147
          VLOG(8) << outside_og_name << " size = " << outside_array.size();
Y
Yang Yang(Tony) 已提交
148 149 150
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
151
            VLOG(8) << j << " " << outside_array[j].numel();
Y
Yang Yang(Tony) 已提交
152 153 154 155 156 157 158 159 160 161
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
        }
      }

Y
Yang Yang(Tony) 已提交
162 163
      executor.Run(*program, *cur_scope_iter, block->ID(), false);

Y
Yang Yu 已提交
164 165
      auto &pg_names = Outputs(kXGRAD);
      auto &p_names = Inputs(kX);
Y
Yang Yang(Tony) 已提交
166
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yang Yang(Tony) 已提交
167 168
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        if (pg_names[param_id] == framework::kEmptyVarName) {
169
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
170 171
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
172

Y
Yang Yang(Tony) 已提交
173
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
174 175 176 177 178 179 180 181 182 183 184
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
185
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
Y
Yang Yang(Tony) 已提交
186 187 188
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
189
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yang Yang(Tony) 已提交
190 191 192
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

193
            auto var_name = pg_names[param_id];
Y
Yang Yang(Tony) 已提交
194
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
195
                "fill_constant", framework::VariableNameMap{},
196
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
197
            zero_op->Run(scope, dev_place);
198 199 200
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
201 202 203
          }
        }

Y
Yang Yang(Tony) 已提交
204
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
205
        auto sum_op = framework::OpRegistry::CreateOp(
Y
Yang Yang(Tony) 已提交
206
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
Y
Yiqun Liu 已提交
207
            {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
D
dzhwinter 已提交
208
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
209
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
210
      }
211 212
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
213 214 215 216 217 218 219 220 221
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
222
  std::unique_ptr<framework::OpDesc> Apply() const override {
F
Update  
fengjiayi 已提交
223 224 225 226 227 228 229 230
    auto *while_grad = new framework::OpDesc();
    while_grad->SetType("while_grad");
    while_grad->SetInput(kX, Input(kX));
    while_grad->SetInput(kOutputs, Output(kOutputs));
    while_grad->SetInput(kStepScopes, Output(kStepScopes));

    auto *grad_block = this->grad_block_[0];
    auto *fwd_block = grad_block->ParentBlock();
231 232 233

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
234 235 236 237
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
238 239
      }
    }
F
Update  
fengjiayi 已提交
240
    auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
241
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
242
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
243
        VLOG(8) << "Ignore " << each_ig;
244 245 246
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
247
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
248 249 250 251

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
F
fengjiayi 已提交
252 253 254 255 256 257 258
    block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
    for (auto &p : Input(kX)) {
      block_ins.insert(p);
    }
    for (auto &o : Output(kOutputs)) {
      block_ins.insert(o);
    }
Y
Yang Yang(Tony) 已提交
259
    std::unordered_set<std::string> extra_inputs;
F
Update  
fengjiayi 已提交
260 261 262 263 264 265
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
        if (block_ins.find(input_name) != block_ins.end() ||
            fwd_block->FindVar(input_name) != nullptr) {
Y
Yang Yang(Tony) 已提交
266 267 268 269
          continue;
        }
        extra_inputs.insert(input_name);
      }
F
Update  
fengjiayi 已提交
270
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
271
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
272 273
      }
    }
Y
Yang Yang(Tony) 已提交
274 275 276 277 278

    std::vector<std::string> extra_inputs_list;
    extra_inputs_list.resize(extra_inputs.size());
    std::copy(extra_inputs.begin(), extra_inputs.end(),
              extra_inputs_list.begin());
F
Update  
fengjiayi 已提交
279 280 281 282
    while_grad->SetInput(framework::GradVarName(kOutputs), extra_inputs_list);

    while_grad->SetAttrMap(this->Attrs());
    while_grad->SetBlockAttr(kStepBlock, *grad_block);
Y
Yang Yang(Tony) 已提交
283 284
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
F
Update  
fengjiayi 已提交
285
    while_grad->SetAttr("original_output_grad", extra_inputs_list);
Y
Yang Yang(Tony) 已提交
286

F
Update  
fengjiayi 已提交
287
    return std::unique_ptr<framework::OpDesc>(while_grad);
Y
Yang Yang(Tony) 已提交
288 289 290
  }
};

Y
Yang Yang(Tony) 已提交
291 292
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
293 294
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yu 已提交
295 296
    auto p_names = op_desc.Input(kX);
    auto pg_names = op_desc.Output(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
      auto *g_var = block->FindVarRecursive(pg_names[i]);
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
        VLOG(5) << "Setting " << pg_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
314 315
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
316 317 318
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

Y
Yang Yu 已提交
319 320 321
    auto p_names = ctx->Inputs(kX);
    auto pg_names = ctx->Outputs(kXGRAD);
    auto var_types = ctx->GetInputsVarType(kX);
Y
Yang Yang(Tony) 已提交
322 323 324 325 326 327
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
      if (pg_names[i] == framework::kEmptyVarName) {
        continue;
      }
Y
Yang Yu 已提交
328
      auto dims = ctx->GetInputsElementDim(kX, i);
329
      if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) {
Y
Yang Yang(Tony) 已提交
330
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
331
        dims_to_set.push_back(dims);
332
      } else if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR_ARRAY) {
Y
Yang Yang(Tony) 已提交
333 334
        // not sure how to set the dim of LOD_TENSOR_ARRAY
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
335
        dims_to_set.push_back(dims);
Y
Yang Yang(Tony) 已提交
336 337 338 339 340 341
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

Y
Yang Yang(Tony) 已提交
342 343 344 345 346 347
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
Y
Yang Yang(Tony) 已提交
348 349 350
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);