test_index_select_op.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestIndexSelectOp(OpTest):
    def setUp(self):
        self.op_type = "index_select"
        self.init_dtype_type()
        index_np = np.random.randint(
            low=0, high=self.x_shape[self.dim], size=self.index_size)
        x_np = np.random.random(self.x_shape).astype(self.x_type)
        self.inputs = {'X': x_np, 'Index': index_np}
        self.attrs = {'dim': self.dim}
        outer_loop = np.prod(self.x_shape[:self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                out_list.append(x_np_reshape[i, index_np[j]])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.index_type = np.int64
        self.x_shape = (100, 4, 5)
        self.index_size = 100

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


class TestIndexSelectOpCase2(TestIndexSelectOp):
    def init_dtype_type(self):
        self.x_type = np.float32
        self.index_type = np.int32
        self.dim = -2
        self.x_shape = (10, 10, 4, 10)
        self.index_size = 10


class TestIndexSelectAPI(unittest.TestCase):
    def input_data(self):
        self.data_x = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]])
        self.data_index = np.array([0, 1, 1]).astype('int32')

    def test_index_select_api(self):
        self.input_data()

        # case 1:
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
            index = fluid.layers.data(
                name='index', shape=[3], dtype='int32', append_batch_size=False)
            z = paddle.index_select(x, index, dim=1)
            exe = fluid.Executor(fluid.CPUPlace())
            res, = exe.run(feed={'x': self.data_x,
                                 'index': self.data_index},
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
                               [9.0, 10.0, 10.0]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))

        # case 2:
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
            index = fluid.layers.data(
                name='index', shape=[3], dtype='int32', append_batch_size=False)
            z = paddle.index_select(x, index)
            exe = fluid.Executor(fluid.CPUPlace())
            res, = exe.run(feed={'x': self.data_x,
                                 'index': self.data_index},
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.array(
            [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))

    def test_dygraph_api(self):
        self.input_data()
        # case 1:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.index_select(x, index)
            np_z = z.numpy()
        expect_out = np.array(
            [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]])
        self.assertTrue(np.allclose(expect_out, np_z))

        # case 2:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.index_select(x, index, dim=1)
            np_z = z.numpy()
        expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
                               [9.0, 10.0, 10.0]])
        self.assertTrue(np.allclose(expect_out, np_z))


if __name__ == '__main__':
    unittest.main()