sequence_pool_op.h 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
29 30 31 32
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
33
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
34
class SequencePoolKernel : public framework::OpKernel<T> {
35 36 37
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
38
    auto* out = context.Output<Tensor>("Out");
D
dzhwinter 已提交
39
    std::string pooltype = context.Attr<std::string>("pooltype");
40 41

    auto dims = in->dims();
Q
Qiao Longfei 已提交
42
    auto lod = in->lod();
43 44
    int64_t w = in->numel() / dims[0];

Q
Qiao Longfei 已提交
45 46 47 48 49 50 51 52 53 54 55
    // InferShape by lod
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE_GE(
        dims[0],
        /*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
        "The first dimension of Input(X) must be large than batch size.");
    dims[0] = lod[0].size() - 1;
    out->Resize({dims});

    auto lod_level_0 = lod[0];

56
    out->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
57
    auto& dev_ctx = context.template device_context<DeviceContext>();
58
    if (pooltype == "MAX") {
Q
QI JUN 已提交
59
      math::MaxSeqPoolFunctor<DeviceContext, T> max_pool;
60 61 62
      auto* index = context.Output<Tensor>("MaxIndex");
      index->Resize({dims});
      index->mutable_data<int>(context.GetPlace());
Q
QI JUN 已提交
63
      max_pool(dev_ctx, *in, out, index);
64 65 66
      return;
    }

Q
QI JUN 已提交
67 68
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
Q
Qiao Longfei 已提交
69
    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
70 71 72
      Tensor in_t = in->Slice(static_cast<int>(lod_level_0[i]),
                              static_cast<int>(lod_level_0[i + 1]));
      Tensor out_t = out->Slice(i, i + 1);
Q
Qiao Longfei 已提交
73
      int64_t h = static_cast<int64_t>(lod_level_0[i + 1] - lod_level_0[i]);
74 75
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
76

D
dzhwinter 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SUM") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else if (pooltype == "LAST") {
        out_e.device(place) = in_e.chip(h - 1, 0);
      } else if (pooltype == "FIRST") {
        out_e.device(place) = in_e.chip(0, 0);
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
90
      }
91 92 93 94
    }
  }
};

Q
QI JUN 已提交
95
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
96
class SequencePoolGradKernel : public framework::OpKernel<T> {
97 98
 public:
  void Compute(const framework::ExecutionContext& context) const override {
99
    auto* in = context.Input<LoDTensor>("X");
100
    auto* out_g = context.Input<Tensor>(framework::GradVarName("Out"));
101
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
102
    std::string pooltype = context.Attr<std::string>("pooltype");
103 104

    auto dims = in->dims();
105
    auto lod = in->lod()[0];
106 107 108
    int64_t w = in->numel() / dims[0];

    in_g->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
109
    auto& dev_ctx = context.template device_context<DeviceContext>();
110 111

    if (pooltype == "MAX") {
Q
QI JUN 已提交
112
      math::MaxSeqPoolGradFunctor<DeviceContext, T> max_pool_grad;
113
      auto* index = context.Input<Tensor>("MaxIndex");
Q
QI JUN 已提交
114
      max_pool_grad(dev_ctx, *out_g, *index, in_g);
115 116 117
      return;
    }

D
dzhwinter 已提交
118 119
    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
Q
QI JUN 已提交
120 121
      math::SetConstant<DeviceContext, T> functor;
      functor(dev_ctx, in_g, 0);
L
Luo Tao 已提交
122
    }
Q
QI JUN 已提交
123 124 125
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();

126
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
127 128 129
      auto in_g_t =
          in_g->Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      auto out_g_t = out_g->Slice(i, i + 1);
130
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
131 132
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
X
xuwei06 已提交
133
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
134
      Eigen::DSizes<int, 2> bcast(h, 1);
135

D
dzhwinter 已提交
136 137 138 139 140 141 142 143
      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SUM") {
        in_g_e.device(place) = (out_g_e).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
X
xuwei06 已提交
144
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
D
dzhwinter 已提交
145
      } else if (pooltype == "FIRST") {
X
xuwei06 已提交
146
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
D
dzhwinter 已提交
147 148
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
149
      }
150 151 152 153 154 155
    }
  }
};

}  // namespace operators
}  // namespace paddle