elementwise_sub_op.h 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15
#pragma once
16

17
#include "paddle/fluid/framework/pten_utils.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
G
gongweibao 已提交
19

20
// only can include the headers in paddle/pten/include dirs
21
#include "paddle/pten/kernels/math_kernel.h"
G
gongweibao 已提交
22 23 24
namespace paddle {
namespace operators {

25 26 27 28 29
template <typename DeviceContext, typename T>
void default_elementwise_sub(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
30 31 32
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
33 34 35 36 37 38
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          SubFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseSubFunctor<T>(), z);
  }
39 40
}

Q
QI JUN 已提交
41
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
42
class ElementwiseSubKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
43 44
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
45 46 47
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
48
    z->mutable_data<T>(ctx.GetPlace());
49

50 51 52 53 54
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
55 56
    pten::SubtractKernel<T>(dev_ctx, *pt_x.get(), *pt_y.get(), axis,
                            pt_z.get());
G
gongweibao 已提交
57 58 59 60
  }
};

template <typename T>
C
chengduoZH 已提交
61 62
struct SubGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
63 64 65
};

template <typename T>
C
chengduoZH 已提交
66 67
struct SubGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
G
gongweibao 已提交
68 69
};

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
default_elementwise_sub_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");

  ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
}

85 86 87 88 89 90 91 92
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
93
  default_elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
94 95
}

96
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
97
// cuda definition
98 99 100 101 102 103 104 105 106 107
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_sub_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy);

108 109 110 111 112 113 114 115 116 117
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
118
template <typename DeviceContext, typename T>
119
class ElementwiseSubGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
120 121
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
122
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
123 124
    using Tensor = framework::Tensor;

125 126
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
C
chengduoZH 已提交
127 128 129
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
130
    // skip out
131
    auto* out = dout;
132 133 134
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
135 136
      default_elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
137
    }
G
gongweibao 已提交
138 139
  }
};
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

template <typename DeviceContext, typename T>
class ElementwiseSubDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* ddout = ctx.Output<Tensor>("DDOut");

    // DDOut = ddx - ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
      int axis = ctx.Attr<int>("axis");
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &ddx_safe, &ddy_safe, axis, SubFunctor<T>(), ddout);
    }
  }
};

G
gongweibao 已提交
168 169
}  // namespace operators
}  // namespace paddle