op_lite.h 6.5 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <glog/logging.h>
#include <boost/variant.hpp>
#include <map>
20
#include <memory>
S
superjomn 已提交
21 22 23 24
#include <string>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/variable.h"
S
superjomn 已提交
25 26 27
#include "paddle/fluid/lite/core/context.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/scope.h"
S
superjomn 已提交
28 29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace lite {

using any_t = boost::variant<int, float, framework::Variable *>;
using anys_t = std::map<std::string, any_t>;

// For registry factory.
struct Registry {
  void Touch() {}
};

S
superjomn 已提交
40 41 42 43 44
namespace mir {
class Node;
class SSAGraph;
}

45 46
class OpInfo;

S
superjomn 已提交
47 48 49 50 51
/**
 * The base class of an light-weight operators, currently just used in inference
 * to eliminate overhead of some operations in current framework.
 *
 * The Operator are designed as follows:
S
update  
superjomn 已提交
52 53 54
 * - it can has some members to hold the argument and some other computation
 * resources,
 * - it should act like a function call, no more logic included.
S
superjomn 已提交
55 56 57
 */
class OpLite : public Registry {
 public:
S
update  
superjomn 已提交
58
  // The strategies to pick a kernel from candidates.
S
superjomn 已提交
59 60 61 62 63 64 65 66 67
  enum class KernelStrategy {
    // Return the user specified one.
    kStatic = 0,
    // Specify the expected kernel externally.
    kSpecified,
    // Run each kernel to evaluate and get the best kernel.
    kRuntime,
  };

S
superjomn 已提交
68
  OpLite() = default;
S
superjomn 已提交
69
  OpLite(const std::string &type) : op_type_(type) {}
70 71
  OpLite(const std::vector<Place> &valid_places)
      : valid_places_(valid_places) {}
S
superjomn 已提交
72

S
superjomn 已提交
73 74 75 76
  void SetValidPlaces(const std::vector<Place> &places) {
    valid_places_ = places;
  }
  const std::vector<Place> &valid_places() const { return valid_places_; }
S
update  
superjomn 已提交
77
  // Check the shape.
S
superjomn 已提交
78
  virtual bool CheckShape() const { return true; }
S
update  
superjomn 已提交
79
  // Inference the outputs' shape.
S
superjomn 已提交
80
  virtual bool InferShape() const { return true; }
S
update  
superjomn 已提交
81
  // Run this operator.
S
superjomn 已提交
82
  virtual bool Run();
S
update  
superjomn 已提交
83

84 85 86 87
  bool Attach(const framework::OpDesc &opdesc, lite::Scope *scope);

  const std::shared_ptr<OpInfo> &op_info() const { return op_info_; }
  std::shared_ptr<OpInfo> &mutable_op_info() { return op_info_; }
S
superjomn 已提交
88

S
update  
superjomn 已提交
89
  // Human-readable information.
S
superjomn 已提交
90 91
  virtual std::string DebugString() const = 0;

S
superjomn 已提交
92 93
  const Place &kernel_place() const { return kernel_place_; }

S
update  
superjomn 已提交
94 95 96
  void PickKernel(const std::vector<Place> &valid_places,
                  KernelStrategy kernel_strategy = KernelStrategy::kStatic);

S
superjomn 已提交
97 98 99
  virtual ~OpLite() = default;

 protected:
S
superjomn 已提交
100 101 102 103
  // Attach it with the runtime environment.
  virtual bool AttachImpl(const framework::OpDesc &opdesc,
                          lite::Scope *scope) = 0;

S
superjomn 已提交
104 105
  // Specify the kernel to run by default. This will specify the value of
  // `kernel_place_`.
S
superjomn 已提交
106 107 108 109
  virtual void StaticPickKernel(const std::vector<Place> &valid_targets) {
    auto kernels = CreateKernels(valid_targets);
    kernel_ = std::move(kernels.front());
  }
S
superjomn 已提交
110

S
update  
superjomn 已提交
111 112 113 114 115 116
  // Wait until all the inputs' events are ready.
  void SyncInputEvents() {}

  // Record the output events, and that will tell all the dependent operators
  // some inputs are ready.
  void RecordOutputEvents() {}
S
superjomn 已提交
117 118

  // Create all the kernels for the valid targets.
S
update  
superjomn 已提交
119
  std::vector<std::unique_ptr<KernelBase>> CreateKernels(
S
superjomn 已提交
120
      const std::vector<Place> &places, const std::string &kernel_type = "");
S
superjomn 已提交
121

122 123 124
  const Tensor *GetTensor(lite::Scope *scope, const std::string &name) const;
  Tensor *GetMutableTensor(lite::Scope *scope, const std::string &name) const;

S
superjomn 已提交
125 126 127
  friend class mir::Node;
  friend class mir::SSAGraph;

S
superjomn 已提交
128
 protected:
S
update  
superjomn 已提交
129 130
  std::unique_ptr<KernelBase> kernel_;
  std::string op_type_;
S
superjomn 已提交
131 132
  std::vector<Place> valid_places_;
  Place kernel_place_{TARGET(kHost), PRECISION(kFloat)};
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  std::shared_ptr<OpInfo> op_info_;
};

/*
 * Operator Information, such as some description. It will be shared by all the
 * kernels of the same operator.
 */
class OpInfo {
 public:
  void Build(const framework::OpDesc &desc) {
    ExtractInputsAndOutputs(desc);
    CollectInputAndOutputArgnames(desc);
    CollectArguments(desc);
  }

  const std::list<std::string> &input_names() const { return input_names_; }
  const std::list<std::string> &output_names() const { return output_names_; }
  const std::map<std::string, std::list<std::string>> &input_argument() {
    return input_argument_;
  }
  const std::map<std::string, std::list<std::string>> &output_argument() {
    return output_argument_;
  }
S
Superjomn 已提交
156 157
  bool GetInputArgname(const std::string &value_name, std::string *out);
  bool GetOutputArgname(const std::string &value_name, std::string *out);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

  const std::list<std::string> &input_argnames() const {
    return input_argnames_;
  }
  const std::list<std::string> &output_argnames() const {
    return output_argnames_;
  }

 private:
  void ExtractInputsAndOutputs(const framework::OpDesc &opdesc) {
    for (const auto &item : opdesc.Inputs()) {
      for (const auto &x : item.second) {
        input_names_.push_back(x);
      }
    }
    for (const auto &item : opdesc.Outputs()) {
      for (const auto &x : item.second) {
        output_names_.push_back(x);
      }
    }
  }

  void CollectInputAndOutputArgnames(const framework::OpDesc &opdesc) {
    for (const auto &item : opdesc.InputNames()) {
      input_argnames_.push_back(item);
    }
    for (const auto &item : opdesc.OutputNames()) {
      output_argnames_.push_back(item);
    }
  }

  void CollectArguments(const framework::OpDesc &opdesc) {
    for (const auto &item : opdesc.Inputs()) {
      for (auto &x : item.second) {
        input_argument_[item.first].push_back(x);
      }
    }
    for (const auto &item : opdesc.Outputs()) {
      for (auto &x : item.second) {
        output_argument_[item.first].push_back(x);
      }
    }
  }

 private:
S
superjomn 已提交
203 204
  std::list<std::string> input_names_;
  std::list<std::string> output_names_;
205 206 207 208
  std::list<std::string> input_argnames_;
  std::list<std::string> output_argnames_;
  std::map<std::string, std::list<std::string>> input_argument_;
  std::map<std::string, std::list<std::string>> output_argument_;
S
superjomn 已提交
209 210 211 212
};

}  // namespace lite
}  // namespace paddle