partitioner.py 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import framework as framework
from paddle.fluid import core, unique_name
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
23 24 25 26
from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
from paddle.distributed.auto_parallel.dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute
from .process_group import new_process_group
27
from .utils import set_dist_op_desc_original_id
28
from .utils import print_program_with_dist_attr, is_forward_op, is_backward_op, is_loss_op
J
JZ-LIANG 已提交
29
from .operators.common import BACKWARD_ONLY_DIST_OPS
30 31

__varname_not_in_block__ = ["lod_tensor_blocking_queue_0"]
32 33 34
__not_shape_var_type__ = [
    core.VarDesc.VarType.READER, core.VarDesc.VarType.STEP_SCOPES
]
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


class Partitioner(object):
    """
    warning:: Partitioner is experimental and subject to change.

    Partitioner convert a program into another program.
    Given a serial program which has been auto completed with shard annotation, the Partitioner 
    convert the serial program into a "distributed" program. The Partitioner will  modify the serial
    program in following two ways, which is also the major difference between serial and distributed program:
        1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation
        2. partition var: if a var is sharded, modify the shape of var according to its shard annotation

    Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user.
    """

51
    def __init__(self, dist_context, rank_id=0):
52 53
        """
        Args:
54
            dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario.
55 56
            rank_id (int): global rank id to which the partitioned distributed program belong.
        """
57
        if not isinstance(dist_context, DistributedContext):
58
            raise TypeError(
59 60
                "dist_context be paddle.fluid.DistributedContext, got %s here" %
                type(dist_context))
61

62
        self._dist_context = dist_context
63 64 65 66
        self._rank_id = rank_id
        self._serial2dist_varname_mapping = {}
        self._dist_varname_suffix = ""

67 68 69
    def partition(self, serial_main_program, serial_startup_program,
                  params_grads):
        if not isinstance(serial_main_program, (Program)):
70
            raise TypeError(
71 72
                "main_program be paddle.fluid.framework.program, got %s here" %
                type(serial_main_program))
73 74

        # check if shard annotated serial program valid
75
        if not self._is_valid_annotated_program(serial_main_program):
76 77 78
            raise RuntimeError(
                "Not all vars or ops are annotated in main program !")

79 80
        # init distop helper
        dist_op_context = self._dist_context.dist_op_context
81 82
        dist_op_context.varname_mapping = self._serial2dist_varname_mapping
        dist_op_context.rank_id = self._rank_id
83

84 85 86 87 88 89
        # partition startup program
        if serial_startup_program == None:
            partitioned_startup_prog = None
        else:
            partitioned_startup_prog = self.partition_startup_program(
                serial_main_program, serial_startup_program)
90
        dist_op_context.dst_startup_program = partitioned_startup_prog
91

92
        # partition main program
93 94
        partitioned_main_prog, partitioned_params_grads = self.partition_main_program(
            serial_main_program, params_grads)
95

96
        return partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads
97

98 99
    def partition_startup_program(self, serial_main_program,
                                  serial_startup_program):
100

101 102 103 104
        if not isinstance(serial_startup_program, (Program)):
            raise TypeError(
                "dist_context be paddle.fluid.framework.program, got %s here" %
                type(serial_startup_program))
105

106 107 108
        partitioned_startup_prog = fluid.Program()
        ref_block = serial_main_program.global_block()
        target_block = partitioned_startup_prog.global_block()
J
JZ-LIANG 已提交
109
        var2shape = {}
110
        temp_varname_map = {}
111

112 113
        # tensors
        for var in serial_startup_program.list_vars():
J
JZ-LIANG 已提交
114 115 116 117 118 119
            assert var.persistable
            new_name = var.name + self._dist_varname_suffix
            temp_varname_map[var.name] = new_name
            target_shape = _partition_var(self._dist_context, ref_block,
                                          target_block, var.name, new_name)
            var2shape[new_name] = target_shape
120 121 122 123 124 125 126 127 128 129

        # ops
        for op in serial_startup_program.global_block().ops:
            # TODO if var not belong to this rank, should be filtered
            output_vars = op.desc.output_arg_names()
            assert len(
                output_vars
            ) == 1, "initializer should output only ONE variable, but got [{}]".format(
                str(op.desc))
            assert temp_varname_map[output_vars[
J
JZ-LIANG 已提交
130
                0]] in var2shape, "try to initialize [{}] which is not a persistable var".format(
131 132 133 134 135 136
                    output_vars[0])
            new_op_desc = target_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op_desc._rename_output(output_vars[0],
                                       temp_varname_map[output_vars[0]])
            new_op_desc._set_attr("shape",
J
JZ-LIANG 已提交
137
                                  var2shape[temp_varname_map[output_vars[0]]])
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            target_block._sync_with_cpp()

            # set distribute atrribute
            new_op = target_block.ops[-1]
            assert new_op.type == new_op_desc.type()
            assert new_op.desc == new_op_desc
            output_var = target_block.var(output_vars[0])
            output_var_attr = self._dist_context.get_tensor_dist_attr_for_program(
                output_var)
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = output_var_attr.process_mesh
            op_attr.set_output_dims_mapping(output_var.name,
                                            output_var_attr.dims_mapping)
            op_attr.set_input_dims_mapping(output_var.name,
                                           output_var_attr.dims_mapping)
            self._dist_context.set_op_dist_attr_for_program(new_op, op_attr)

        return partitioned_startup_prog

    def partition_main_program(self, serial_main_program, params_and_grads):
158 159 160 161 162 163
        """
        1. partition variables
        2. replace local op with corresponding dist op
        """

        partitioned_main_prog = fluid.Program()
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        dist_op_context = self._dist_context.dist_op_context
        dist_op_context.dst_main_program = partitioned_main_prog

        for idx in range(self._dist_context.block_state.nblock):
            ref_block = serial_main_program.blocks[idx]

            if idx == 0:
                target_block = partitioned_main_prog.blocks[0]
            else:
                target_block = partitioned_main_prog._create_block(
                    parent_idx=ref_block.parent_idx)
                assert ref_block.idx == target_block.idx
                target_block._set_forward_block_idx(ref_block.forward_block_idx)
            dist_op_context.work_block = target_block
            self.partition_block(ref_block, target_block)

        partitioned_main_prog.current_block_idx = 0

        partitioned_params_and_grads = []
        for p, g in params_and_grads:
            assert p.name in self._serial2dist_varname_mapping
            dist_p = self._get_dist_var_by_serial_var(p, partitioned_main_prog)
            if g is None:
                dist_g = None
            else:
                assert g.name in self._serial2dist_varname_mapping
                dist_g = self._get_dist_var_by_serial_var(g,
                                                          partitioned_main_prog)
            partitioned_params_and_grads.append((dist_p, dist_g))

        return partitioned_main_prog, partitioned_params_and_grads

    def partition_block(self, ref_block, target_block):

        dist_op_context = self._dist_context.dist_op_context
        serial_ops = ref_block.ops
200

201 202 203 204 205 206 207 208 209
        last_fwd_op_idx = -1
        for idx, op in enumerate(ref_block.ops):
            if is_loss_op(op):
                last_fwd_op_idx = idx
                break

        if last_fwd_op_idx == -1:
            last_fwd_op_idx = len(ref_block.ops)

210 211 212
        # init mapping
        forward_op_id2forward_op = {}
        for idx in range(len(serial_ops)):
213
            if idx <= last_fwd_op_idx:
214 215
                forward_op_id2forward_op[serial_ops[idx].desc.id(
                )] = serial_ops[idx]
216

217
        appended_grad_times = 0
218
        # partiiton
219 220 221 222 223
        for idx, op in enumerate(serial_ops):

            if is_backward_op(op) and (is_forward_op(serial_ops[idx - 1]) or
                                       is_loss_op(serial_ops[idx - 1])):
                appended_grad_times += 1
224 225 226 227 228

            # partititon input variables
            for serial_input_varname in op.desc.input_arg_names():
                if serial_input_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_input_varname + self._dist_varname_suffix
229 230 231 232
                    if ref_block.has_var(serial_input_varname):
                        _partition_var(self._dist_context, ref_block,
                                       target_block, serial_input_varname,
                                       new_varname)
233 234 235 236 237 238 239 240 241 242
                    else:
                        assert serial_input_varname in __varname_not_in_block__

                    self._serial2dist_varname_mapping[
                        serial_input_varname] = new_varname

            # partition output vars
            for serial_output_varname in op.desc.output_arg_names():
                if serial_output_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_output_varname + self._dist_varname_suffix
243
                    _partition_var(self._dist_context, ref_block, target_block,
244 245 246 247 248
                                   serial_output_varname, new_varname)
                    self._serial2dist_varname_mapping[
                        serial_output_varname] = new_varname

            # partition op
249 250
            op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
            if is_forward_op(op) or op_dist_attr.is_recompute:
251 252 253 254 255 256 257 258 259 260
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_forward_impl = _get_dist_op_forward_implement(
                    op, self._dist_context)
                dist_op_forward_impl.forward(self._dist_context, **kinputs,
                                             **koutputs)

            elif is_backward_op(op):
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_backward_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
261 262 263 264 265
                grad_var_to_var = self._dist_context.dist_op_context.grad_var_to_var[
                    appended_grad_times]
                dist_op_backward_impl.backward(
                    self._dist_context, **kinputs, **koutputs,
                    **{"grad_var_to_var": grad_var_to_var})
266
            else:
267 268 269 270
                raise NotImplementedError(
                    "partitioner only support forward op and backward op, but got {}".
                    format(str(op)))

271 272 273 274 275 276
    def _is_valid_annotated_program(self, program):

        # TODO (ZJ-LIANG) should check all block
        ops = program.global_block().ops
        vars_ = program.list_vars()
        op_dist_attrs = [
277
            self._dist_context.get_op_dist_attr_for_program(op) for op in ops
278 279
        ]
        var_dist_attrs = [
280
            self._dist_context.get_tensor_dist_attr_for_program(var)
281
            for var in vars_ if (var.type not in __not_shape_var_type__)
282 283 284 285 286 287 288 289 290
        ]

        all_ops_annotated = all(dist_attr is not None
                                for dist_attr in op_dist_attrs)
        all_vars_annotated = all(dist_attr is not None
                                 for dist_attr in var_dist_attrs)

        return all_ops_annotated and all_vars_annotated

291 292 293 294 295 296 297 298
    def _get_dist_var_by_serial_var(self, serial_var, partitioned_main_prog):

        block_idx = serial_var.block.idx
        target_block = partitioned_main_prog.blocks[block_idx]
        dist_var_name = self._serial2dist_varname_mapping[serial_var.name]
        assert target_block.has_var(dist_var_name)
        return target_block.var(dist_var_name)

299 300 301 302

def _get_dist_shape(var, dist_attr):

    var_shape = var.shape
303 304
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
305 306 307
    if mapping == []:
        return var_shape

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            assert var_shape[idx] % mesh[mapping[
                idx]] == 0, "un-event partition: var_shape[idx]=[{}], mesh[{}]".format(
                    var_shape[idx], mesh[mapping[idx]])
            new_shape.append(var_shape[idx] // mesh[mapping[idx]])

    return new_shape


325
def _partition_parameter(dist_context, src_var, dst_block, dst_varname,
326 327
                         dst_shape):
    # NOTE hack to copied Parameter
328
    # not initialized parameter, need to initialize it
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

    param = Parameter(
        block=dst_block,
        type=src_var.type,
        name=dst_varname,
        shape=dst_shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer,
        **copied_kwargs)

349
    return param
350 351


352 353
def _partition_intermediate_var(dist_context, src_var, dst_block, dst_varname,
                                dst_shape):
354 355 356 357 358 359 360 361 362 363 364 365
    var = dst_block.create_var(
        type=src_var.type,
        name=dst_varname,
        shape=dst_shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        persistable=src_var.persistable,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer)

366
    return var
367 368


369
def _partition_var(dist_context, src_block, dst_block, src_varname,
370 371 372 373 374 375
                   dst_varname):
    """
    partition include: split + replicate
    """
    src_var = src_block.var(src_varname)

376
    if src_var.type in __not_shape_var_type__:
377
        persist = getattr(src_var, 'persistable', False)
378
        new_var = dst_block.create_var(
379 380
            type=src_var.type,
            name=dst_varname,
381
            persistable=persist,
382
            stop_gradient=True)
J
JZ-LIANG 已提交
383
        target_shape = None
384
    else:
385
        dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var)
386 387 388
        target_shape = _get_dist_shape(src_var, dist_attr)

        if isinstance(src_var, Parameter):
389 390
            new_var = _partition_parameter(dist_context, src_var, dst_block,
                                           dst_varname, target_shape)
391
        else:
392 393 394 395 396 397 398 399
            new_var = _partition_intermediate_var(
                dist_context, src_var, dst_block, dst_varname, target_shape)

    dist_attr = copy.deepcopy(
        dist_context.get_tensor_dist_attr_for_program(src_var))
    assert dist_attr is not None
    dist_context.set_tensor_dist_attr_for_program(new_var, dist_attr)

J
JZ-LIANG 已提交
400
    return target_shape
401 402


403 404 405
def _get_dist_op_backward_implement(backward_op, dist_context,
                                    forward_op_id2forward_op):
    dist_op_context = dist_context.dist_op_context
406 407 408
    if backward_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
        forward_op_id = dist_op_context.grad_op_id_to_op_id[backward_op.desc.id(
        )]
409 410 411
        forward_op = forward_op_id2forward_op[forward_op_id]
        forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
            forward_op)
412 413 414 415 416
        dist_op_impl_container = get_distributed_operator_impl_container(
            forward_op_dist_attr.impl_type)
        dist_op_impl = dist_op_impl_container.get_impl(
            forward_op_dist_attr.impl_idx)
        return dist_op_impl
417

418
    # # NOTE trick for dist ops that only have backward implement
J
JZ-LIANG 已提交
419 420
    if backward_op.type in BACKWARD_ONLY_DIST_OPS:
        op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op)
421 422
        assert op_dist_attr.impl_idx >= 0
        dist_op_impl = get_distributed_operator_impl_container(
Z
zhaoyingli 已提交
423
            op_dist_attr.impl_type).get_impl(op_dist_attr.impl_idx)
424
        return dist_op_impl
J
JZ-LIANG 已提交
425 426 427

    dist_op = get_distributed_operator_impl_container("default")
    return dist_op.get_impl(0)
428 429 430 431


def _get_dist_op_forward_implement(forward_op, dist_context):
    dist_attr = dist_context.get_op_dist_attr_for_program(forward_op)
432 433 434 435
    dist_op_impl_container = get_distributed_operator_impl_container(
        dist_attr.impl_type)
    dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx)
    return dist_op_impl