mul_mkldnn_op.cc 20.5 KB
Newer Older
P
Physher 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
W
wanghuancoder 已提交
16

P
Physher 已提交
17
#include "paddle/fluid/operators/mul_op.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
P
Physher 已提交
28 29 30 31 32 33 34

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
35
using framework::LoDTensor;
P
Physher 已提交
36
using framework::Tensor;
37 38 39 40 41

using platform::MatMulV2MKLDNNHandler;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;

42 43 44 45
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::prop_kind;
using dnnl::stream;
P
Physher 已提交
46 47 48 49

template <typename XT, typename YT, typename OT>
class MulPrimitiveFactory {
 public:
50
  explicit MulPrimitiveFactory(const dnnl::engine &engine) : engine_(engine) {}
P
Physher 已提交
51

52 53 54 55 56
  inner_product_forward CreateMulPrimitive(const Tensor *x_input,
                                           const Tensor *y_input,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    /* check data format and reorder if need */
P
Physher 已提交
57 58 59
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

60 61 62 63 64 65 66 67 68 69
    // TODO(intel-minghui) : Remove the restriction that only supports Input(Y)
    // as weights
    PADDLE_ENFORCE_EQ(
        (std::is_same<YT, float>::value), true,
        platform::errors::InvalidArgument(
            "Input(Y) must be fp32 data type since only fp32 data type is "
            "supported in the current design of MKLDNN INT8."));

    auto x_matrix = UpdateDataFormat<XT>(x_input, x_num_col_dims, ctx);
    auto y_matrix = UpdateDataFormat<YT>(y_input, y_num_col_dims, ctx);
P
Physher 已提交
70 71 72 73 74 75 76 77

    auto output_dim = output->dims();
    if (output_dim.size() != 2) {
      output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    if (mul_) {
      UpdateDataPointers(ctx, output, &x_matrix);
A
Adam 已提交
78
      Execute();
79
      return *(mul_);
P
Physher 已提交
80 81
    }

82
    auto src_desc = CreateMemDescriptor<XT>(&x_matrix, MKLDNNMemoryFormat::nc);
P
Physher 已提交
83
    x_input_ = CreateMemory<XT>(src_desc, &x_matrix);
84 85 86 87 88 89 90 91 92

    if (is_int8_) {
      const auto trans_y = TransposeInputY(&y_matrix);
      auto scale_y = ctx.Attr<std::vector<float>>("scale_y");
      y_input_ = QuantInputY(trans_y, scale_y);
    } else {
      y_input_ = TransposeInputY(&y_matrix);
    }

93
    auto dst_desc = CreateMemDescriptor<OT>(output, MKLDNNMemoryFormat::any);
P
Physher 已提交
94 95

    mul_ = CreateMulPrimitive(*x_input_, *y_input_, dst_desc, output, ctx);
A
Adam 已提交
96
    Execute();
97 98 99 100 101 102 103 104
    return *(mul_);
  }

 private:
  memory ReorderWithScale(const memory::desc &src_desc,
                          const memory::desc &dst_desc, void *src_data,
                          const std::vector<float> &scale) {
    auto mask = scale.size() > 1 ? 1 : 0;
105
    dnnl::primitive_attr attr;
106 107 108 109 110
    attr.set_output_scales(mask, scale);

    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);

111
    auto reorder_pd = dnnl::reorder::primitive_desc(src_mem, dst_mem, attr);
112

113
    auto reorder = dnnl::reorder(reorder_pd);
114

115
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
116 117 118 119 120 121
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    return dst_mem;
  }

  memory QuantInputY(memory input_y, const std::vector<float> &scale_y) {
    const auto &dims = input_y.get_desc().data.dims;
    auto ndims = input_y.get_desc().data.ndims;
    auto y_dims = std::vector<int64_t>(dims, dims + ndims);

    auto user_y_desc = CreateMemDescriptor<YT>(y_dims, MKLDNNMemoryFormat::oi);
    auto y_desc = CreateMemDescriptor<int8_t>(y_dims, MKLDNNMemoryFormat::oi);

    return ReorderWithScale(user_y_desc, y_desc, input_y.get_data_handle(),
                            scale_y);
  }

138 139 140
  dnnl::primitive_attr CreateMulAttr(const ExecutionContext &ctx,
                                     bool force_fp32_output) {
    dnnl::primitive_attr mul_attr;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    auto scale_y_data = ctx.Attr<std::vector<float>>("scale_y");
    auto scale_x_data = ctx.Attr<float>("scale_x");
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("scale_out");

    bool is_multi_channel = scale_y_data.size() > 1;
    int count = is_multi_channel ? scale_y_data.size() : 1;
    std::vector<float> output_shift_scale(count);
    for (int i = 0; i < count; i++) {
      if (scale_y_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_x_data * scale_y_data[i]);
    }
    int mul_mask = is_multi_channel ? 1 : 0;
    mul_attr.set_output_scales(mul_mask, output_shift_scale);

    return mul_attr;
  }

  inner_product_forward CreateMulPrimitive(const memory &x_memory,
                                           const memory &y_memory,
                                           const memory::desc &dst_desc,
                                           Tensor *output,
                                           const ExecutionContext &ctx) {
    const auto x_desc = x_memory.get_desc();
    const auto y_desc = y_memory.get_desc();
    inner_product_forward::primitive_desc mul_prim_desc;

    const auto &mul_desc = inner_product_forward::desc(
        prop_kind::forward, x_desc, y_desc, dst_desc);

    if (is_int8_) {
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto mul_attr = CreateMulAttr(ctx, force_fp32_output);
      mul_prim_desc =
          inner_product_forward::primitive_desc(mul_desc, mul_attr, engine_);
    } else {
      mul_prim_desc = inner_product_forward::primitive_desc(mul_desc, engine_);
    }

    output_ = CreateDstMemory(mul_prim_desc, ctx, output);

    return inner_product_forward(mul_prim_desc);
P
Physher 已提交
187 188
  }

A
Adam 已提交
189
  void Execute() {
190
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
191 192 193
    (*mul_).execute(astream, {{DNNL_ARG_SRC, *x_input_},
                              {DNNL_ARG_WEIGHTS, *y_input_},
                              {DNNL_ARG_DST, *output_}});
A
Adam 已提交
194 195 196
    astream.wait();
  }

P
Physher 已提交
197 198 199 200 201
  template <typename T>
  Tensor UpdateDataFormat(const Tensor *data, int num_col_dims,
                          const ExecutionContext &ctx) {
    Tensor x_tmp;
    Tensor data_matrix;
202 203
    MKLDNNMemoryFormat src_fmt = data->format();
    MKLDNNMemoryFormat dst_fmt;
P
Physher 已提交
204 205 206
    auto src_mdesc = CreateMemDescriptor<T>(data, src_fmt);

    if ((data->dims().size() == 4 &&
207
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::nchw)) ||
P
Physher 已提交
208
        (data->dims().size() == 5 &&
209
         src_fmt != (dst_fmt = MKLDNNMemoryFormat::ncdhw))) {
P
Physher 已提交
210 211 212 213 214 215 216
      auto dst_mdesc = CreateMemDescriptor<T>(data, dst_fmt);
      x_tmp.mutable_data<T>(ctx.GetPlace(), data->memory_size());

      Reorder(src_mdesc, dst_mdesc, to_void_cast<T>(data->data<T>()),
              to_void_cast<T>(x_tmp.data<T>()));

      x_tmp.Resize(data->dims());
A
Adam 已提交
217
      x_tmp.set_format(platform::GetMKLDNNFormat(dst_mdesc));
P
Physher 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230
      data_matrix = framework::ReshapeToMatrix(x_tmp, num_col_dims);
    } else {
      data_matrix = framework::ReshapeToMatrix(*data, num_col_dims);
    }

    return data_matrix;
  }

  void UpdateDataPointers(const ExecutionContext &ctx, Tensor *out,
                          const Tensor *in) {
    x_input_->set_data_handle(to_void_cast<XT>(in->data<XT>()));
    output_->set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));

A
Adam 已提交
231
    if (out->format() == MKLDNNMemoryFormat::undef) {
A
Adam 已提交
232
      auto output_format = platform::GetMKLDNNFormat(*output_);
233
      out->set_format((MKLDNNMemoryFormat)output_format);
P
Physher 已提交
234 235 236 237 238
    }
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
239
      const Tensor *tensor, MKLDNNMemoryFormat format,
P
Physher 已提交
240
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
A
Adam 已提交
241
    auto dims = framework::vectorize<int64_t>(tensor->dims());
P
Physher 已提交
242 243 244 245 246
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
A
Adam 已提交
247
      const std::vector<int64_t> &dims, MKLDNNMemoryFormat format,
P
Physher 已提交
248 249 250 251 252 253
      memory::data_type type = platform::MKLDNNGetDataType<T>()) {
    return platform::MKLDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory CreateMemory(const memory::desc &desc, const Tensor *tensor) {
A
Adam 已提交
254
    return memory(desc, engine_, to_void_cast<T>(tensor->data<T>()));
P
Physher 已提交
255 256 257 258 259
  }

  memory CreateDstMemory(
      const inner_product_forward::primitive_desc &mul_prim_desc,
      const ExecutionContext &ctx, Tensor *output) {
A
Adam 已提交
260 261
    auto dst_desc = mul_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
P
Physher 已提交
262 263

    OT *output_data = output->mutable_data<OT>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
264 265
    output->set_format(paddle::platform::GetMKLDNNFormat(dst_desc));
    return memory(dst_desc, engine_, to_void_cast<OT>(output_data));
P
Physher 已提交
266 267 268 269
  }

  memory Reorder(const memory::desc &src_desc, const memory::desc &dst_desc,
                 void *src_data, void *dst_data = NULL) {
A
Adam 已提交
270 271 272
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = dst_data ? memory(dst_desc, engine_, dst_data)
                            : memory(dst_desc, engine_);
P
Physher 已提交
273

274
    auto reorder = dnnl::reorder(src_mem, dst_mem);
A
Adam 已提交
275

276
    auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
277 278 279 280 281 282
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }
P
Physher 已提交
283 284 285 286 287

    return dst_mem;
  }

  memory TransposeInputY(const Tensor *input_y) {
A
Adam 已提交
288
    auto dims = framework::vectorize<int64_t>(input_y->dims());
P
Physher 已提交
289
    std::swap(dims[0], dims[1]);  // Correct output dimensions
290 291
    auto src_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<YT>(dims, MKLDNNMemoryFormat::oi);
P
Physher 已提交
292 293 294
    return Reorder(src_desc, dst_desc, to_void_cast<YT>(input_y->data<YT>()));
  }

295
  const dnnl::engine &engine_;
296 297 298 299
  paddle::optional<memory> x_input_;
  paddle::optional<memory> y_input_;
  paddle::optional<memory> output_;
  paddle::optional<inner_product_forward> mul_;
300 301
  static constexpr bool is_int8_ =
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
P
Physher 已提交
302 303 304 305 306 307 308
};

/* OT: output data type */
template <typename XT, typename YT, typename OT>
std::shared_ptr<MulPrimitiveFactory<XT, YT, OT>> GetPrimitiveFactory(
    const MKLDNNDeviceContext &dev_ctx, const ExecutionContext &ctx,
    const Tensor *input_x, const Tensor *input_y,
309
    const dnnl::engine &mkldnn_engine) {
310 311 312 313 314
  std::string key = platform::CreateKey(
      dev_ctx, input_x->type(), framework::vectorize(input_x->dims()),
      input_y->type(), framework::vectorize(input_y->dims()),
      ctx.OutputName("Out"));
  key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
P
Physher 已提交
315 316 317 318 319 320

  auto prim_creator = std::static_pointer_cast<MulPrimitiveFactory<XT, YT, OT>>(
      dev_ctx.GetBlob(key));

  if (prim_creator == nullptr) {
    prim_creator =
321
        std::make_shared<MulPrimitiveFactory<XT, YT, OT>>(mkldnn_engine);
P
Physher 已提交
322 323 324 325 326 327 328 329 330 331 332
    dev_ctx.SetBlob(key, prim_creator);
  }

  return prim_creator;
}

template <typename XT, typename YT>
inner_product_forward GetMulPrimitive(const MKLDNNDeviceContext &dev_ctx,
                                      const ExecutionContext &ctx,
                                      const Tensor *input_x,
                                      const Tensor *input_y, Tensor *output,
333
                                      const dnnl::engine &mkldnn_engine) {
334
  constexpr bool is_int8 =
P
Physher 已提交
335 336 337
      std::is_same<XT, int8_t>::value || std::is_same<XT, uint8_t>::value;
  bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

338
  if (is_int8 && !force_fp32_output) {
P
Physher 已提交
339
    return GetPrimitiveFactory<XT, YT, int8_t>(dev_ctx, ctx, input_x, input_y,
340
                                               mkldnn_engine)
P
Physher 已提交
341 342 343 344
        ->CreateMulPrimitive(input_x, input_y, output, ctx);

  } else {
    return GetPrimitiveFactory<XT, YT, float>(dev_ctx, ctx, input_x, input_y,
345
                                              mkldnn_engine)
P
Physher 已提交
346 347 348 349 350 351
        ->CreateMulPrimitive(input_x, input_y, output, ctx);
  }
}

/* XT: input x data type, YT: input y data type */
template <typename XT, typename YT>
352
class MulMKLDNNINT8Kernel : public framework::OpKernel<XT> {
P
Physher 已提交
353 354
 public:
  void Compute(const ExecutionContext &ctx) const override {
355 356 357
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Mul must use CPUPlace"));
358
    platform::MKLDNNDeviceContext::tls().log_lib_version();
P
Physher 已提交
359
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
360
    auto &mkldnn_engine = dev_ctx.GetEngine();
P
Physher 已提交
361 362 363 364 365 366 367 368 369 370 371 372

    const Tensor *x = ctx.Input<Tensor>("X");
    const Tensor *y = ctx.Input<Tensor>("Y");
    Tensor *out = ctx.Output<Tensor>("Out");
    auto out_dims = out->dims();

    auto mul = GetMulPrimitive<XT, YT>(dev_ctx, ctx, x, y, out, mkldnn_engine);

    if (out_dims.size() != 2) {
      out->Resize(out_dims);
    }
    out->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
373 374
    out->set_format(platform::MKLDNNFormatForSize(out_dims.size(),
                                                  MKLDNNMemoryFormat::nchw));
P
Physher 已提交
375 376 377
  }
};

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
template <typename XT, typename YT>
class MulMKLDNNKernel : public framework::OpKernel<XT> {
 public:
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }

 protected:
  void ExecuteMatMul(const ExecutionContext &ctx,
                     const MKLDNNDeviceContext &dev_ctx,
                     const dnnl::engine &onednn_engine,
                     const platform::Place &cpu_place, const Tensor *x,
                     const std::vector<int64_t> &x_dims, bool trans_x,
                     const Tensor *y, const std::vector<int64_t> &y_dims,
                     bool trans_y, Tensor *out) const {
    static const std::vector<int64_t> vec_placeholder;
    MatMulV2MKLDNNHandler<XT> handler(onednn_engine, ctx.GetPlace(), x_dims,
                                      trans_x, y_dims, trans_y, false,
                                      vec_placeholder, vec_placeholder);

    const auto src_memory_p = handler.AcquireSrcMemory(x);
    const auto weights_memory_p = handler.AcquireWeightsMemory(y);
    const auto dst_memory_p = handler.AcquireDstMemory(out);

    auto matmul_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = MKLDNNDeviceContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();

    out->set_layout(framework::DataLayout::kMKLDNN);
    // plain output formats are enforced inside handler
    out->set_format(platform::MKLDNNFormatForSize(
        out->dims().size(), dnnl::memory::format_tag::nchw));
  }

 private:
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    const auto *x = ctx.Input<Tensor>("X");
    const auto *y = ctx.Input<Tensor>("Y");
    auto *out = ctx.Output<Tensor>("Out");

    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

    const Tensor x_matrix = x->dims().size() > 2
                                ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                                : *x;
    const Tensor y_matrix = y->dims().size() > 2
                                ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                                : *y;

    // adding mb dim because MatMulV2 handler needs it
    std::vector<int64_t> y_dims(3, 1);
    std::vector<int64_t> x_dims(3, 1);

    y_dims[1] = y_matrix.dims()[0];
    y_dims[2] = y_matrix.dims()[1];

    x_dims[1] = x_matrix.dims()[0];
    x_dims[2] = x_matrix.dims()[1];

    ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), &x_matrix,
                  x_dims, false, &y_matrix, y_dims, false, out);
  }
};

template <typename XT, typename YT>
class MulGradMKLDNNKernel : public MulMKLDNNKernel<XT, YT> {
 public:
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }

 private:
  template <typename OT = XT>
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    const auto *x = ctx.Input<LoDTensor>("X");
    const auto *y = ctx.Input<LoDTensor>("Y");
    const auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto *dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<LoDTensor>(framework::GradVarName("Y"));

    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");

    const Tensor x_matrix = x->dims().size() > 2
                                ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                                : static_cast<const Tensor &>(*x);
    const Tensor y_matrix = y->dims().size() > 2
                                ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                                : static_cast<const Tensor &>(*y);

    Tensor dout_matrix = *dout;
    dout_matrix.Resize(
        {framework::flatten_to_2d(x->dims(), x_num_col_dims)[0],
         framework::flatten_to_2d(y->dims(), y_num_col_dims)[1]});

    // adding mb dim because MatMulV2 handler needs it
    std::vector<int64_t> x_dims(3, 1);
    std::vector<int64_t> y_dims(3, 1);
    std::vector<int64_t> dout_dims(3, 1);

    x_dims[1] = x_matrix.dims()[0];
    x_dims[2] = x_matrix.dims()[1];

    y_dims[1] = y_matrix.dims()[0];
    y_dims[2] = y_matrix.dims()[1];

    dout_dims[1] = dout_matrix.dims()[0];
    dout_dims[2] = dout_matrix.dims()[1];

    if (dx != nullptr) {
      dx->set_lod(x->lod());
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(),
                          &dout_matrix, dout_dims, false, &y_matrix, y_dims,
                          true, static_cast<Tensor *>(dx));
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(),
                          &x_matrix, x_dims, true, &dout_matrix, dout_dims,
                          false, static_cast<Tensor *>(dy));
    }
  }
};

P
Physher 已提交
513 514 515 516 517 518
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kMULMKLDNNINT8,
519
                                    ops::MulMKLDNNINT8Kernel<uint8_t, float>);
P
Physher 已提交
520 521 522

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kMULMKLDNNINT8,
523 524 525 526 527 528 529 530 531 532
                                    ops::MulMKLDNNINT8Kernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kMULMKLDNNFP32,
                                    ops::MulMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    mul, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kMULMKLDNNFP32,
    ops::MulMKLDNNKernel<paddle::platform::bfloat16,
                         paddle::platform::bfloat16>);
P
Physher 已提交
533 534

REGISTER_OP_KERNEL(mul, MKLDNN, ::paddle::platform::CPUPlace,
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
                   ops::MulMKLDNNINT8Kernel<uint8_t, float>,
                   ops::MulMKLDNNKernel<paddle::platform::bfloat16,
                                        paddle::platform::bfloat16>,
                   ops::MulMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(mul_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kMULMKLDNNFP32,
                                    ops::MulGradMKLDNNKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    mul_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kMULMKLDNNFP32,
    ops::MulGradMKLDNNKernel<paddle::platform::bfloat16,
                             paddle::platform::bfloat16>,
    ops::MulGradMKLDNNKernel<float, float>);