multi_trainer.cc 2.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
24
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
25
                              Dataset* dataset) {
26
  thread_num_ = trainer_desc.thread_num();
27
  SetDataset(dataset);
28
  // get filelist from trainer_desc here
29 30
  dataset->CreateReaders();
  VLOG(3) << "readers created";
D
dongdaxiang 已提交
31 32
  const std::vector<std::shared_ptr<paddle::framework::DataFeed>> readers =
      dataset->GetReaders();
33
  VLOG(3) << "readers num: " << readers.size();
34 35 36 37
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
38 39 40
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
D
dongdaxiang 已提交
41
    workers_[i]->Initialize(trainer_desc);
42
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
43
    workers_[i]->SetDataFeed(readers[i]);
44
  }
D
dongdaxiang 已提交
45 46

  // set debug here
47
  SetDebug(trainer_desc.debug());
48 49 50 51 52 53 54 55 56 57 58 59 60 61
}

// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
}

void MultiTrainer::Run() {
62
  VLOG(3) << "Going to run";
63
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
64 65 66 67 68 69 70
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
71 72 73 74 75 76 77
  }
}

void MultiTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
78
  dataset_ptr_->DestroyReaders();
79 80 81 82
}

}  // end namespace framework
}  // end namespace paddle