layers.py 164.2 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
    ReluActivation, IdentityActivation, SoftmaxActivation
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33 34 35 36 37 38 39 40
__all__ = [
    "full_matrix_projection",
    "AggregateLevel",
    "ExpandLevel",
    "identity_projection",
    "dotmul_projection",
    "dotmul_operator",
    "repeat_layer",
41
    "seq_reshape_layer",
Q
qijun 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    "table_projection",
    "mixed_layer",
    "data_layer",
    "embedding_layer",
    "fc_layer",
    "grumemory",
    "pooling_layer",
    "lstmemory",
    "last_seq",
    "first_seq",
    "cos_sim",
    "hsigmoid",
    "conv_projection",
L
Luo Tao 已提交
55
    "mse_cost",
Q
qijun 已提交
56 57 58 59 60 61 62 63 64
    "regression_cost",
    'classification_cost',
    "LayerOutput",
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
Q
qijun 已提交
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
Q
qijun 已提交
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
Q
qijun 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
99
    'warp_ctc_layer',
Q
qijun 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'print_layer',
Y
yuan 已提交
114
    'priorbox_layer',
Q
qijun 已提交
115
    'spp_layer',
D
dangqingqing 已提交
116
    'pad_layer',
L
Luo Tao 已提交
117
    'eos_layer',
118
    'layer_support',
Q
qijun 已提交
119
]
Z
zhangjinchao01 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132


class LayerType(object):
    """
    Layer type enumerations.
    """

    DATA = "data"
    MIXED_LAYER = "mixed"
    LSTMEMORY = "lstmemory"
    GRUMEMORY = "gated_recurrent"
    SEQUENCE_LAST_INSTANCE = "seqlastins"
    SEQUENCE_FIRST_INSTANCE = "seqfirstins"
133
    SEQUENCE_RESHAPE = "seqreshape"
Z
zhangjinchao01 已提交
134 135 136 137
    POOLING_MAX = "max"
    POOLING_AVG = 'average'
    FC_LAYER = "fc"
    COST = 'cost'
138 139
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
140 141
    HSIGMOID = 'hsigmoid'
    CONV_LAYER = "conv"
142
    CONVTRANS_LAYER = "convt"
143 144 145
    EXCONV_LAYER = "exconv"
    EXCONVTRANS_LAYER = "exconvt"
    CUDNNCONV_LAYER = "cudnn_conv"
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152 153
    POOL_LAYER = "pool"
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
154
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
155 156 157 158 159 160 161

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
162
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
163 164 165
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
166
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
167
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
168
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
169 170 171 172 173 174 175 176 177 178 179

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
180
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
181
    BLOCK_EXPAND = "blockexpand"
182
    MAXOUT = "maxout"
Q
qijun 已提交
183
    SPP_LAYER = "spp"
D
dangqingqing 已提交
184
    PAD_LAYER = "pad"
Z
zhangjinchao01 已提交
185

186
    PRINT_LAYER = "print"
Y
yuan 已提交
187
    PRIORBOX_LAYER = "priorbox"
188

Z
zhangjinchao01 已提交
189
    CTC_LAYER = "ctc"
190
    WARP_CTC_LAYER = "warp_ctc"
Z
zhangjinchao01 已提交
191 192
    CRF_LAYER = "crf"
    CRF_DECODING_LAYER = "crf_decoding"
193
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201

    RANK_COST = "rank-cost"
    LAMBDA_COST = "lambda_cost"
    HUBER = "huber"
    CROSS_ENTROPY = "multi-class-cross-entropy"
    CROSS_ENTROPY_WITH_SELFNORM = "multi_class_cross_entropy_with_selfnorm"
    SOFT_BIN_CLASS_CROSS_ENTROPY = "soft_binary_class_cross_entropy"
    MULTI_BIN_LABEL_CROSS_ENTROPY = "multi_binary_label_cross_entropy"
X
xuwei06 已提交
202
    SUM_COST = "sum_cost"
Z
zhangjinchao01 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
    EACH_TIMESTEP = 'non-seq'
    EACH_SEQUENCE = 'seq'


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
248
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
249 250
    """

Q
qijun 已提交
251 252 253 254 255 256 257 258 259
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
260
                 reverse=None):
Z
zhangjinchao01 已提交
261 262
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
263
        assert size is not None
Z
zhangjinchao01 已提交
264 265 266
        assert LayerType.is_layer_type(layer_type)
        self.name = name
        self.layer_type = layer_type
267 268
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
269 270 271 272 273 274 275 276
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
277
        self.reverse = reverse
Z
zhangjinchao01 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290

    def __repr__(self):
        """
        Disable __repr__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

    def __str__(self):
        """
        Disable __str__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

291 292 293 294 295 296 297 298
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
299 300 301

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
302
DEVICE = 'device'
Z
zhangjinchao01 已提交
303 304 305


def layer_support(*attrs):
306
    attrs_list = list(attrs)
307
    attrs_list.append(DEVICE)
Q
qijun 已提交
308

Z
zhangjinchao01 已提交
309 310 311
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
312
            for attr in attrs_list:
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
329 330 331 332 333
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
373 374
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
375 376 377 378
    proj.origin = input
    return proj


379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
409 410
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
411 412 413 414
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
454 455
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    proj.origin = input
    return proj


def identity_projection(input, offset=None):
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
491
    :type input: LayerOutput
Z
zhangjinchao01 已提交
492 493
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
494
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
495 496 497 498 499 500
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
Q
qijun 已提交
501 502
        proj = IdentityOffsetProjection(
            input_layer_name=input.name, offset=offset)
Z
zhangjinchao01 已提交
503 504 505 506
        proj.origin = input
    return proj


X
xuwei06 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
529
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
530 531 532 533
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
534
@wrap_param_attr_default()
535
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
536
    """
537
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

551 552 553 554 555 556 557
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
558 559
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
560
    proj.origin = input
561
    return proj
Z
zhangjinchao01 已提交
562

563 564

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
565 566
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
567

Z
zhangjinchao01 已提交
568
    .. math::
569 570
       out.row[i] += scale * (x.row[i] .* y.row[i])

Z
zhangjinchao01 已提交
571 572
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
573

Z
zhangjinchao01 已提交
574
    The example usage is:
575

Z
zhangjinchao01 已提交
576
    .. code-block:: python
577 578 579

       op = dotmul_operator(x=layer1, y=layer2, scale=0.5)

580 581 582 583
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
584 585
    :param scale: config scalar, default value is one.
    :type scale: float
586 587
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
588
    """
589 590 591
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
592
    a = kwargs.get('x', a)  # For Backward capacity.
593 594 595 596 597 598
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
599
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
600
    op.origin = [a, b]
601
    return op
Z
zhangjinchao01 已提交
602

603

Z
zhangjinchao01 已提交
604
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
605 606 607
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
644 645 646 647 648 649
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
663
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
680 681 682 683 684 685 686
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
687 688 689 690 691
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

692
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
693 694 695 696 697 698 699 700
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
701
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
702
            self.inputs.append(other)
703 704 705 706
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
707 708 709 710 711 712 713 714 715 716 717
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

    def __exit__(self, *args, **kwargs):
        del args, kwargs  # unused parameter to suppress warning
        assert len(self.inputs) != 0
718
        ml = MixedLayer(
Z
zhangjinchao01 已提交
719 720 721 722 723
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
724
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
725 726 727
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
728
        self.finalized = True
Z
zhangjinchao01 已提交
729 730 731 732 733 734


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
735 736 737 738 739
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
784 785 786 787 788 789
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
790
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
791 792 793 794 795 796 797 798
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
799
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
800 801 802 803 804 805 806
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
807
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
808 809 810 811 812

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
813
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
814
    :type height: int|None
L
Luo Tao 已提交
815
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
816
    :type width: int|None
Z
zhangjinchao01 已提交
817 818
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
819
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
820 821
    :rtype: LayerOutput
    """
Q
qijun 已提交
822 823 824 825
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
826 827
        height=height,
        width=width,
Q
qijun 已提交
828
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
851
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
852 853
    :rtype: LayerOutput
    """
Q
qijun 已提交
854 855 856 857 858 859
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
860 861 862 863 864 865 866 867 868
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
869 870 871 872 873 874 875
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
876 877 878 879 880 881 882 883 884 885 886 887
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
888
    which is equal to:
Z
zhangjinchao01 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
911
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
912 913 914 915
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
916
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
917 918
        param_attr = [param_attr]
    else:
919
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
920 921 922 923
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

924
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
925 926

    Layer(
Q
qijun 已提交
927 928 929
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
930 931 932 933 934
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
935 936 937
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
938

939

940 941 942 943
@wrap_name_default("print")
def print_layer(input, name=None):
    """
    Print the output value of input layers. This layer is useful for debugging.
944 945 946 947 948

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
949
    :return: LayerOutput
950
    """
951 952 953 954 955
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
956 957 958 959

    Layer(
        name=name,
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
960
        inputs=[l.name for l in input], )
961
    # this layer don't return anything, can not be input of other layer.
962

Z
zhangjinchao01 已提交
963

Y
yuan 已提交
964
@wrap_name_default("priorbox")
G
gaoyuan 已提交
965
def priorbox_layer(input,
G
gaoyuan 已提交
966
                   image,
G
gaoyuan 已提交
967 968 969 970 971
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
972 973 974 975 976 977 978
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
979 980
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
981 982 983 984 985 986 987 988 989 990 991
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
992
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
993 994 995
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
996
        inputs=[input.name, image.name],
Y
yuan 已提交
997 998 999 1000 1001 1002
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1003 1004
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1005
        parents=[input, image],
G
gaoyuan 已提交
1006 1007 1008
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1009 1010 1011 1012 1013

@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1014 1015 1016 1017
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
Z
zhangjinchao01 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
                  agg_level=AggregateLevel.EACH_TIMESTEP,
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
                                agg_level=AggregateLevel.EACH_SEQUENCE)

C
caoying03 已提交
1031 1032
    :param agg_level: AggregateLevel.EACH_TIMESTEP or
                      AggregateLevel.EACH_SEQUENCE
Z
zhangjinchao01 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1045
    :return: LayerOutput object.
Y
Yu Yang 已提交
1046
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1047 1048
    """
    extra_dict = dict()
1049
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1050 1051
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1052 1053 1054 1055
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1056 1057 1058 1059 1060 1061 1062 1063
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
Q
qijun 已提交
1064
        **extra_dict)
Z
zhangjinchao01 已提交
1065

Q
qijun 已提交
1066 1067
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1068

Q
qijun 已提交
1069

Z
zhangjinchao01 已提交
1070 1071
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1072
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1073 1074 1075
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
Q
qijun 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084
def lstmemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1085 1086 1087 1088 1089 1090 1091 1092
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1093
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1094

L
luotao02 已提交
1095
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1096

L
luotao02 已提交
1097
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1098

L
luotao02 已提交
1099
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1100

L
luotao02 已提交
1101
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1102 1103


C
caoying03 已提交
1104
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1105
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1106 1107 1108 1109
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1110

C
caoying03 已提交
1111
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1112 1113
    to config a simple plain lstm layer.

C
caoying03 已提交
1114 1115 1116 1117
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1141
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1142 1143 1144 1145 1146 1147
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    assert input.size is not None and input.size % 4 == 0
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal

        plog("NOTE: The lstmemory layer[%s]'s size is set by previous input "
             "layer. The lstm size should be equal with input layer size/4. The"
             " size which is set explicitly will be ignored." % name)
Z
zhangjinchao01 已提交
1158

Q
qijun 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1169

Q
qijun 已提交
1170 1171 1172 1173 1174
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1175

Z
zhangjinchao01 已提交
1176 1177 1178

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1179
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1180 1181 1182
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
Q
qijun 已提交
1183 1184 1185 1186 1187 1188 1189 1190
def grumemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1212 1213
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1214 1215 1216 1217 1218

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1219 1220 1221
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1222 1223 1224 1225 1226

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1227
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1228
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1229 1230 1231
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1232

C
caoying03 已提交
1233 1234 1235
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1247
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
1263 1264 1265
    :param size: Stub parameter of size, but actually not used. If set this size
                 will get a warning.
    :type size: None
D
dangqingqing 已提交
1266
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1267 1268 1269 1270
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1271 1272 1273 1274 1275 1276 1277 1278 1279
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
        plog("NOTE: the gru memory layer's size is set by previous input layer,"
             " and should be input size / 3. Set size explicitly will be "
             "ignored.")
Z
zhangjinchao01 已提交
1280

Q
qijun 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1290

Q
qijun 已提交
1291 1292 1293 1294 1295
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1296

Z
zhangjinchao01 已提交
1297 1298 1299

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1300 1301 1302
def last_seq(input,
             name=None,
             agg_level=AggregateLevel.EACH_TIMESTEP,
Z
zhangjinchao01 已提交
1303 1304 1305 1306
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

L
Luo Tao 已提交
1307 1308 1309 1310 1311 1312
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1313 1314 1315 1316 1317 1318 1319
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1320
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1321 1322
    :rtype: LayerOutput
    """
1323 1324 1325 1326 1327 1328
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

Z
zhangjinchao01 已提交
1329 1330 1331 1332 1333
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
Q
qijun 已提交
1334 1335 1336 1337 1338 1339
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1340 1341 1342 1343


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1344 1345 1346
def first_seq(input,
              name=None,
              agg_level=AggregateLevel.EACH_TIMESTEP,
Z
zhangjinchao01 已提交
1347 1348 1349 1350
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

L
Luo Tao 已提交
1351 1352 1353 1354 1355 1356
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1357 1358 1359 1360 1361 1362 1363
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1364
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1365 1366
    :rtype: LayerOutput
    """
1367 1368 1369 1370 1371 1372 1373

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

Z
zhangjinchao01 已提交
1374 1375 1376 1377 1378
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
Q
qijun 已提交
1379 1380 1381 1382 1383 1384
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1385 1386 1387 1388 1389 1390


class ExpandLevel(object):
    FROM_TIMESTEP = AggregateLevel.EACH_TIMESTEP
    FROM_SEQUENCE = AggregateLevel.EACH_SEQUENCE

1391

Z
zhangjinchao01 已提交
1392 1393
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1394 1395
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
                 name=None,
                 bias_attr=False,
                 expand_level=ExpandLevel.FROM_TIMESTEP,
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
                             expand_level=ExpandLevel.FROM_TIMESTEP)

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1425
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1435 1436 1437 1438 1439 1440
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1441 1442


X
xuwei06 已提交
1443 1444
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1445
def repeat_layer(input, num_repeats, name=None, layer_attr=None):
X
xuwei06 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    """
    A layer for repeating the input for num_repeats times. This is equivalent
    to apply concat_layer() with num_repeats same input.

    .. math::
       y  = [x, x, \cdots, x]

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1457
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
        num_filters=num_repeats,
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1476 1477 1478 1479 1480 1481 1482
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
        parents=[input])

X
xuwei06 已提交
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
    the dimension of each instance is M, and the input reshape_size is N, then the 
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1567
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1568 1569
    :rtype: LayerOutput
    """
1570
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1571
    assert len(input) == 2
1572 1573 1574 1575 1576 1577 1578
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1579 1580 1581 1582
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1583 1584 1585 1586 1587 1588
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1589 1590


L
liaogang 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1607
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1608

L
liaogang 已提交
1609
    :param   input:        A input layer.
L
liaogang 已提交
1610
    :type    input:        LayerOutput.
L
liaogang 已提交
1611
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1612
    :type    out_size_x:   int|None
L
liaogang 已提交
1613
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1614
    :type    out_size_y:   int|None
L
liaogang 已提交
1615
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1616
    :type    name:         None|basestring
L
liaogang 已提交
1617
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1618 1619 1620 1621 1622 1623 1624
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1625
    assert input.num_filters is not None
L
liaogang 已提交
1626
    num_channels = input.num_filters
Q
qijun 已提交
1627 1628 1629 1630 1631 1632 1633
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1634
                channels=num_channels)),
Q
qijun 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1644

Z
zhangjinchao01 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1672
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1673 1674
    :rtype: LayerOutput
    """
1675 1676 1677
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1678 1679 1680
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1681
        inputs=[weight.name, input.name],
Q
qijun 已提交
1682 1683 1684
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1685 1686 1687 1688 1689 1690


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1691
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
1692 1693

    .. math::
1694
       y  = w x
Z
zhangjinchao01 已提交
1695

1696 1697 1698 1699 1700
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1716
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1717 1718
    :rtype: LayerOutput
    """
1719 1720 1721
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1722 1723 1724 1725
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
1726 1727 1728
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
1729 1730 1731 1732 1733 1734


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
1735
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1754
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1755 1756 1757 1758 1759 1760
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
1761 1762 1763
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1764 1765


1766 1767
@wrap_name_default()
@layer_support()
H
Haonan 已提交
1768
def rotate_layer(input, height, width, name=None, layer_attr=None):
1769
    """
H
Haonan 已提交
1770 1771
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
1772 1773

    .. math::
H
Haonan 已提交
1774
       y(j,i,:) = x(M-i-1,j,:)
1775

H
Haonan 已提交
1776
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
1777 1778 1779 1780 1781 1782

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
1783 1784
                          height=100,
                          width=100)
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
1798 1799 1800
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
1801
        width=width,
H
Haonan 已提交
1802 1803 1804 1805 1806 1807 1808 1809
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
1810 1811


Z
zhangjinchao01 已提交
1812 1813
@wrap_name_default()
@layer_support()
1814
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
1815 1816 1817 1818
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
1819
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
1820 1821 1822 1823 1824
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
1825

1826 1827
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1828

L
Luo Tao 已提交
1829 1830 1831 1832 1833 1834
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1847
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1848 1849
    :rtype: LayerOutput
    """
1850
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
1851 1852 1853 1854 1855 1856
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1857
            **ExtraLayerAttribute.to_kwargs(layer_attr))
1858
    else:
1859 1860
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
1861 1862 1863 1864 1865 1866
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1867
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
1868
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
1869

1870

Z
zhangjinchao01 已提交
1871 1872
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
1873
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
1874
@layer_support()
Q
qijun 已提交
1875 1876 1877 1878 1879 1880 1881
def hsigmoid(input,
             label,
             num_classes,
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
                        label=data_layer,
                        num_classes=3)

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
    :type num_classes: int
L
luotao02 已提交
1903 1904
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
1905 1906 1907 1908 1909
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1910
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1911 1912 1913 1914
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1915 1916 1917 1918 1919 1920 1921 1922 1923
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1924 1925 1926 1927 1928
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

    ipts_for_layer = []
    parents = []
1929
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
1930
        assert isinstance(each_input, LayerOutput)
1931
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
1932 1933 1934 1935
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
1936
    l = Layer(
Z
zhangjinchao01 已提交
1937 1938 1939 1940 1941
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
1942 1943 1944
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
1945

1946

Z
zhangjinchao01 已提交
1947 1948 1949 1950 1951
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
1968 1969
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
1970
    """
1971
    Convolution layer for image. Paddle can support both square and non-square
1972
    input currently.
Z
zhangjinchao01 已提交
1973 1974 1975 1976

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
1977

1978
    Convolution Transpose (deconv) layer for image. Paddle can support both square
1979
    and non-square input currently.
1980

X
xuwei06 已提交
1981
    The details of convolution transpose layer,
1982 1983 1984
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
1985 1986 1987 1988
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
1989 1990 1991
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
1992
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
1993 1994
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
1995

L
Luo Tao 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2006 2007 2008 2009
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2010 2011 2012
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2013 2014 2015
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2016
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2017 2018 2019 2020 2021
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2022 2023 2024
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2025 2026
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2027 2028 2029
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2044 2045
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2046
    :param layer_type: specify the layer_type, default is None. If trans=True,
2047
                       layer_type has to be "exconvt", otherwise layer_type
2048 2049
                       has to be either "exconv" or "cudnn_conv"
    :type layer_type: String
D
dangqingqing 已提交
2050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2051 2052 2053 2054 2055
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2056

Z
zhangjinchao01 已提交
2057
    if filter_size_y is None:
2058 2059 2060 2061 2062 2063
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2064
    if stride_y is None:
2065 2066 2067 2068 2069 2070
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2071
    if padding_y is None:
2072 2073 2074 2075 2076 2077 2078 2079
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2080
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2081 2082 2083 2084
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2085

2086 2087 2088 2089 2090 2091 2092 2093
    if layer_type:
        if trans:
            assert layer_type in ["exconvt"]
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2094

X
xuwei06 已提交
2095
    l = Layer(
Z
zhangjinchao01 已提交
2096
        name=name,
Q
qijun 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2109 2110 2111 2112
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2113
        type=lt,
Q
qijun 已提交
2114 2115 2116 2117 2118 2119 2120 2121
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2122 2123 2124 2125


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2136 2137
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2138 2139 2140 2141 2142 2143 2144
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2173
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2174
    :type padding: int
2175 2176
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2177 2178 2179 2180
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2181
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2182
    :type pool_size: int
2183 2184
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2185 2186
    :param num_channels: number of input channel.
    :type num_channels: int
2187
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2188 2189
                      MaxPooling.
    :type pool_type: BasePoolingType
2190
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2191
    :type stride: int
2192 2193
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2194 2195
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2196 2197 2198 2199
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2200 2201
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2212 2213 2214 2215 2216 2217 2218 2219
    type_name = pool_type.name + '-projection' \
      if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
      else pool_type.name

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2220
    l = Layer(
Z
zhangjinchao01 已提交
2221 2222
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2235
                    padding_y=padding_y))
Q
qijun 已提交
2236
        ],
2237
        ceil_mode=ceil_mode,
Q
qijun 已提交
2238 2239 2240 2241 2242 2243 2244
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2245 2246


Q
qijun 已提交
2247 2248
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2249 2250 2251 2252 2253 2254
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2255 2256 2257 2258 2259
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268
    The example usage is:

    ..  code-block:: python

        spp = spp_layer(input=data, 
                        pyramid_height=2, 
                        num_channels=16, 
                        pool_type=MaxPooling())

Q
qijun 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2297
    l = Layer(
Q
qijun 已提交
2298 2299
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2300 2301 2302 2303 2304
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2305
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2317 2318 2319 2320
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2321
    l = Layer(
Q
qijun 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2341 2342 2343 2344


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2345 2346 2347 2348 2349 2350
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2351
                      layer_attr=None):
Z
zhangjinchao01 已提交
2352
    """
2353
    Response normalization across feature maps.
D
dangqingqing 已提交
2354 2355
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2356

L
Luo Tao 已提交
2357 2358 2359 2360 2361 2362
    The example usage is:

    ..  code-block:: python
    
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2363
    :param name: layer name.
D
dangqingqing 已提交
2364
    :type name: None|basestring
Z
zhangjinchao01 已提交
2365 2366
    :param input: layer's input.
    :type input: LayerOutput
2367
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2368
    :type size: int
D
dangqingqing 已提交
2369
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2370
    :type scale: float
D
dangqingqing 已提交
2371
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2372 2373 2374 2375 2376
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2377
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2378 2379 2380
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2381
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2382 2383 2384 2385 2386 2387 2388 2389


@wrap_bias_attr_default()
@wrap_param_attr_default(default_factory=lambda _: ParamAttr(initial_mean=1.0,
                                                             initial_std=0.))
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
Q
qijun 已提交
2390 2391 2392 2393 2394 2395 2396
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2418 2419 2420 2421 2422 2423
    The example usage is:

    ..  code-block:: python
    
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2438
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2466
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2486
    l = Layer(
Z
zhangjinchao01 已提交
2487
        name=name,
Q
qijun 已提交
2488 2489
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2490 2491 2492 2493 2494 2495
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2496
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2497

Q
qijun 已提交
2498 2499 2500 2501 2502 2503 2504
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2532
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2533 2534 2535 2536 2537 2538
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2539 2540 2541
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2542 2543 2544 2545 2546 2547


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
Q
qijun 已提交
2548
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2571 2572 2573
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2574 2575

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2576 2577
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2592
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2593 2594 2595 2596 2597 2598
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2599
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2600 2601 2602 2603 2604 2605 2606
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2607
    l = Layer(
Q
qijun 已提交
2608 2609 2610
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2611 2612
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2613
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2614

Q
qijun 已提交
2615 2616 2617 2618 2619 2620 2621
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2622 2623 2624 2625 2626


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2627
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2628 2629 2630 2631
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2632 2633 2634 2635 2636 2637
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2638 2639 2640
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2641
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2642 2643 2644 2645
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2646
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2647 2648 2649 2650 2651 2652 2653 2654
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2655
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2656 2657

    def __is_type__(o, tp):
2658
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
2680 2681
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
2682

Q
qijun 已提交
2683 2684
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
2685

2686 2687
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2688

Z
zhangjinchao01 已提交
2689
    Layer(
Q
qijun 已提交
2690 2691
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
2692 2693
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2694
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2695
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704

    sz = 0
    for each_input in input:
        if each_input.size is not None:
            sz += each_input.size
        else:
            sz = None
            break

Q
qijun 已提交
2705 2706 2707 2708 2709 2710 2711 2712
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


2713 2714
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
2715
@wrap_bias_attr_default(has_bias=False)
2716 2717 2718 2719 2720
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
2721 2722 2723 2724 2725 2726

    Inputs: 
      - a = [a1, a2, ..., an]
      - b = [b1, b2, ..., bn]
      - Note that the length of a and b should be the same.
        
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
    Output: [a1, b1, a2, b2, ..., an, bn]

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
2745 2746 2747 2748
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


2770
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
2771 2772
def memory(name,
           size,
2773
           memory_name=None,
Q
qijun 已提交
2774 2775 2776 2777
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)


    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
2815 2816 2817
    :type name: basestring
    :param size: size of memory.
    :type size: int
2818 2819 2820
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
Z
zhangjinchao01 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
    :param is_seq: is sequence for boot_layer
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
2831
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
2842 2843
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853
    memory_name = Memory(
        name,
        size,
        is_sequence=is_seq,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
2854 2855

    lout = LayerOutput(
2856
        name=memory_name,
Q
qijun 已提交
2857 2858 2859
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
2860 2861 2862 2863
    return lout


@wrap_bias_attr_default()
Q
qijun 已提交
2864 2865
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
2866 2867 2868
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877
def lstm_step_layer(input,
                    state,
                    size,
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
2878 2879 2880 2881 2882 2883
    """
    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
    as follow.

    ..  math::

L
luotao02 已提交
2884
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
2885

L
luotao02 已提交
2886
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
2887

L
luotao02 已提交
2888
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
2889

L
luotao02 已提交
2890
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
2891

L
luotao02 已提交
2892
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
2893 2894


L
luotao02 已提交
2895
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
    input vector.

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


    This layer contains two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, which name is 'state' and can use
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
    :param size: Layer's size. NOTE: lstm layer's size, should be equal as
                 :code:`input.size/4`, and should be equal as
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2934
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2944 2945 2946
        size=size,
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2947

Q
qijun 已提交
2948 2949 2950 2951 2952 2953 2954
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
2955 2956 2957


@wrap_bias_attr_default()
W
wangyang59 已提交
2958
@wrap_param_attr_default()
Q
qijun 已提交
2959
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
2960 2961 2962
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
2963 2964 2965 2966 2967 2968 2969
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
2970
                   param_attr=None,
Q
qijun 已提交
2971
                   layer_attr=None):
Z
zhangjinchao01 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
2982 2983
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
2984
    :param layer_attr:
D
dangqingqing 已提交
2985
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2986 2987 2988 2989 2990 2991 2992 2993
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
2994 2995 2996 2997
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
2998
        # backward model compatibility.
2999
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3000 3001 3002 3003
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3004
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3005
    return LayerOutput(
Q
qijun 已提交
3006 3007
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3008
        parents=[input, output_mem],
Q
qijun 已提交
3009 3010
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3011 3012 3013 3014 3015 3016


@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3017 3018 3019 3020
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3030
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3031 3032 3033 3034 3035 3036 3037
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3038 3039 3040 3041 3042 3043 3044
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3045

Q
qijun 已提交
3046 3047 3048 3049 3050
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3051 3052 3053 3054 3055 3056 3057


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3058 3059 3060 3061 3062 3063 3064
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3065
    """
3066 3067
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3068

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3096
    :return: LayerOutput object.
3097
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3098
    """
Q
qijun 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3114 3115 3116 3117 3118 3119 3120


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
    """
3121

Z
zhangjinchao01 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
        self.is_seq = is_seq
        assert input.size is not None or size is not None
        if size is not None:
            input.size = size


class SubsequenceInput(object):
    """
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3141

Z
zhangjinchao01 已提交
3142 3143 3144 3145 3146 3147 3148
    def __init__(self, input):
        assert isinstance(input, LayerOutput)
        assert input.size is not None
        self.input = input


@wrap_name_default("recurrent_group")
L
Luo Tao 已提交
3149 3150 3151 3152 3153
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
L
Luo Tao 已提交
3154
                    is_generating=False):
Z
zhangjinchao01 已提交
3155
    """
C
caoying03 已提交
3156 3157 3158 3159 3160
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3205 3206
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3207
    :type reverse: bool
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

    :param targetInlink: the input layer which share info with layer group's output

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

L
Luo Tao 已提交
3219
    :param is_generating: If is generating, none of input type should be LayerOutput;
3220
                          else, for training or testing, one of the input type must
L
Luo Tao 已提交
3221
                          be LayerOutput.
L
Luo Tao 已提交
3222

L
Luo Tao 已提交
3223
    : type is_generating: bool
3224

D
dangqingqing 已提交
3225
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput) \
               or isinstance(x, SubsequenceInput)

    if is_single_input(input):
        input = [input]
3236
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3237 3238 3239 3240 3241 3242

    def is_in_links(x):
        return isinstance(x, LayerOutput) or isinstance(x, SubsequenceInput)

    in_links = filter(is_in_links, input)

3243 3244 3245 3246 3247 3248 3249 3250 3251
    def targetInlink_in_inlinks():
        for inlink in in_links:
            if isinstance(inlink, SubsequenceInput):
                if targetInlink == inlink.input:
                    return True
            elif targetInlink == inlink:
                return True
        return False

Q
qijun 已提交
3252
    assert (targetInlink == None or targetInlink_in_inlinks())
3253 3254 3255 3256
    targetInlinkName = None if targetInlink == None \
                            else targetInlink.name if isinstance(targetInlink, LayerOutput) \
                                                   else targetInlink.input.name

Z
zhangjinchao01 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
    contains_sub_seq = [False]

    def map_in_links(x):
        if isinstance(x, SubsequenceInput):
            contains_sub_seq[0] = True
            return Link(name=x.input.name, has_subseq=True)
        else:
            return x.name

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3267 3268
        name=name,
        in_links=map(map_in_links, in_links),
3269 3270
        seq_reversed=reverse,
        target_inlinkname=targetInlinkName)
Z
zhangjinchao01 已提交
3271
    in_args = []
3272
    has_LayerOutput = False
Z
zhangjinchao01 已提交
3273 3274 3275 3276
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3277
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3278 3279
        elif isinstance(each_input, SubsequenceInput):
            in_args.append(each_input.input)
3280
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3281 3282
        else:
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291
            mem = memory(
                name=mem_name,
                is_seq=each_input.is_seq,
                size=each_input.input.size,
                boot_layer=each_input.input)
            with mixed_layer(
                    name=mem_name,
                    size=each_input.input.size,
                    act=IdentityActivation()) as mix:
Z
zhangjinchao01 已提交
3292 3293 3294
                mix += identity_projection(mem)
            in_args.append(mem)

L
Luo Tao 已提交
3295
    assert (is_generating != has_LayerOutput)
L
Luo Tao 已提交
3296

Z
zhangjinchao01 已提交
3297 3298 3299 3300 3301 3302 3303
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3304
        ot.reverse = reverse
Z
zhangjinchao01 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
        if contains_sub_seq[0]:
            RecurrentLayerGroupSetOutLink(Link(ot.name, has_subseq=True))
        else:
            RecurrentLayerGroupSetOutLink(ot.name)

    RecurrentLayerGroupEnd(name=name)

    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3317

Z
zhangjinchao01 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
Q
qijun 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3344 3345 3346
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3347
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3371
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3372 3373 3374 3375
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3386

3387

H
Haonan 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3424

Z
zhangjinchao01 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3441 3442
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3443 3444 3445 3446 3447 3448
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3449
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3450 3451
    :rtype: LayerOutput
    """
Q
qijun 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3463 3464 3465


@wrap_name_default()
Q
qijun 已提交
3466 3467 3468 3469 3470 3471 3472
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3473
                num_results_per_sample=None):
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3485
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3486 3487 3488 3489 3490 3491
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3492
                               input=[StaticInput(encoder_last)],
3493 3494
                               bos_id=0,
                               eos_id=1,
3495
                               beam_size=5)
3496 3497 3498 3499 3500 3501 3502 3503 3504

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3505
                 step, and it is applied to sequences with arbitrary length by
3506 3507 3508 3509 3510 3511
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
    :param input: Input data for the recurrent unit
3512
    :type input: list
3513 3514 3515
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3516
                   symbol is essential, since it is used to initialize the RNN
3517 3518 3519 3520 3521 3522 3523 3524
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3525 3526
    :param max_length: Max generated sequence length.
    :type max_length: int
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3537 3538
    :return: The generated word index.
    :rtype: LayerOutput
3539 3540
    """

Z
zhangjinchao01 已提交
3541 3542 3543 3544 3545
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3546
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3547 3548 3549 3550 3551 3552
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3553 3554
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
Z
zhangjinchao01 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]
    assert isinstance(gipt, BaseGeneratedInput)

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3571 3572 3573 3574 3575 3576
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)

        return predict

Q
qijun 已提交
3587
    tmp = recurrent_group(
L
Luo Tao 已提交
3588 3589 3590 3591
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
L
Luo Tao 已提交
3592
        is_generating=True)
3593

Z
zhangjinchao01 已提交
3594 3595
    return tmp

Q
qijun 已提交
3596

3597 3598
def __cost_input__(input, label, weight=None):
    """
3599
    inputs and parents for cost layers.
3600 3601 3602 3603
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3604
        assert weight.size == 1
3605 3606 3607
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3608

Z
zhangjinchao01 已提交
3609 3610

@wrap_name_default()
L
luotao1 已提交
3611
@layer_support()
L
Luo Tao 已提交
3612
def mse_cost(input, label, weight=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
3613
    """
L
Luo Tao 已提交
3614 3615 3616 3617 3618
    mean squared error cost:

    ..  math::

       $\frac{1}{N}\sum_{i=1}^N(t _i- y_i)^2$
Z
zhangjinchao01 已提交
3619 3620 3621


    :param name: layer name.
3622
    :type name: basestring
Z
zhangjinchao01 已提交
3623
    :param input: Network prediction.
3624
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3625
    :param label: Data label.
3626 3627 3628 3629
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
L
luotao1 已提交
3630 3631
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3632
    :return: LayerOutput object.
3633
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3634
    """
3635 3636
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3637 3638 3639 3640 3641
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
3642
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3643 3644


L
Luo Tao 已提交
3645 3646 3647
regression_cost = mse_cost


Z
zhangjinchao01 已提交
3648
@wrap_name_default("cost")
3649
@layer_support()
Q
qijun 已提交
3650 3651 3652 3653
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
L
Liang Zhao 已提交
3654
                        top_k=None,
3655 3656
                        evaluator=classification_error_evaluator,
                        layer_attr=None):
Z
zhangjinchao01 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
3666 3667 3668
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
L
Liang Zhao 已提交
3669 3670
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
3671
    :param evaluator: Evaluator method.
3672 3673
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3674
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3675 3676 3677 3678 3679
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
3680 3681 3682

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3683 3684 3685 3686 3687
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

L
Liang Zhao 已提交
3698
        e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k)
Z
zhangjinchao01 已提交
3699

3700
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
3701 3702 3703 3704 3705
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
3706
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3707

3708

Q
qijun 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
                  padding_y=None):
Z
zhangjinchao01 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

3729 3730
       op = conv_operator(img=input1,
                          filter=input2,
3731
                          filter_size=3,
Z
zhangjinchao01 已提交
3732 3733 3734
                          num_filters=64,
                          num_channels=64)

3735 3736 3737 3738
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
3739 3740
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
3741 3742 3743
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
3744
    :type filter_size_y: int
3745 3746
    :param num_filters: channel of output data.
    :type num_filters: int
3747 3748
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
3749
    :param stride: The x dimension of the stride.
L
luotao02 已提交
3750
    :type stride: int
Z
zhangjinchao01 已提交
3751
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
3752
    :type stride_y: int
Z
zhangjinchao01 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
3766

3767 3768
    if num_channels is None:
        num_channels = img.num_filters
3769 3770 3771

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
3772
        filter.size = filter_size * filter_size_y * num_filters * num_channels
3773

Q
qijun 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
    op = ConvOperator(
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
3786
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
3787 3788
    return op

Q
qijun 已提交
3789

3790
@wrap_param_attr_default()
Q
qijun 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
                    param_attr=None):
3802 3803 3804 3805 3806 3807 3808 3809 3810
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
3811
       proj = conv_projection(input=input1,
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
3826 3827
    :param num_channels: channel of input data.
    :type num_channels: int
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
3870
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
3871 3872 3873 3874 3875
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

Q
qijun 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
    proj = ConvProjection(
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
3889 3890 3891 3892

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
3893

D
dangqingqing 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
3911

D
dangqingqing 已提交
3912
    For example,
3913

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
3935 3936

    The simply usage is:
D
dangqingqing 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
3998
@wrap_name_default()
L
luotao1 已提交
3999 4000
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4012 4013 4014 4015
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4016 4017 4018 4019 4020

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4021
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4022 4023 4024

    :param name: layer name
    :type name: basestring
4025 4026
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4027
    :param b: input layer b.
4028
    :type b: LayerOutput
L
luotao1 已提交
4029 4030
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4031
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4032 4033
    :rtype: LayerOutput
    """
4034 4035
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4036 4037 4038
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4039
        inputs=[a.name, b.name],
Q
qijun 已提交
4040
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4041

Q
qijun 已提交
4042 4043
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4044 4045 4046 4047 4048


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4049
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4050
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4051 4052 4053 4054 4055 4056 4057 4058
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4059 4060 4061 4062 4063
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4064
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4065 4066

    In this formular:
4067 4068
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4069 4070
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4071
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4072 4073 4074 4075 4076

    The simple usage is:

    .. code-block:: python

4077
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4078 4079 4080

    :param name: layer name
    :type name: basestring
4081 4082 4083 4084
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4085
    :param size: the layer dimension.
L
luotao02 已提交
4086
    :type size: int.
Z
zhangjinchao01 已提交
4087 4088 4089
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4090
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4091 4092 4093 4094 4095 4096
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4097
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4098 4099
    :rtype: LayerOutput
    """
4100
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4101 4102 4103 4104 4105 4106
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4107 4108 4109 4110
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4111 4112 4113 4114 4115 4116


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4117
@layer_support()
Q
qijun 已提交
4118 4119
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4120
                       select=None,
Q
qijun 已提交
4121 4122
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4123 4124 4125
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4126 4127 4128
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4139
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4140 4141 4142 4143 4144

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4145 4146
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4147
                   If is None, acts exactly like fc_layer.
4148
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4161
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4162 4163 4164 4165
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4166
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4167 4168
        param_attr = [param_attr]
    else:
4169
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4170 4171 4172 4173
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4174 4175 4176 4177
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4178
    Layer(
Q
qijun 已提交
4179 4180 4181
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4182 4183 4184
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4185
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4186 4187 4188 4189
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4190 4191 4192 4193 4194 4195 4196
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4197 4198 4199


@wrap_name_default()
L
luotao1 已提交
4200 4201
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4216 4217
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4218
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4219 4220
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4221
    l = Layer(
Z
zhangjinchao01 已提交
4222 4223 4224
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4225 4226 4227
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4228 4229 4230


@wrap_name_default()
L
luotao1 已提交
4231
@layer_support()
Q
qijun 已提交
4232 4233 4234 4235
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4236
                          layer_attr=None):
Z
zhangjinchao01 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4258 4259
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4260
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4261 4262 4263 4264 4265 4266 4267 4268
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4269 4270 4271
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4272 4273 4274


@wrap_name_default()
L
luotao1 已提交
4275
@layer_support()
Q
qijun 已提交
4276
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4277
    """
4278 4279 4280 4281
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4282 4283 4284

    .. math::

4285
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4286

4287 4288 4289 4290 4291
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4292

4293
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4294 4295

    In this formular:
4296 4297 4298 4299 4300 4301
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4302 4303 4304 4305 4306

    The simple usage is:

    .. code-block:: python

4307
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4308 4309
                                       size=elem_dim)

4310 4311 4312 4313
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4314 4315 4316 4317
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4318 4319
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4320
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4321 4322
    :rtype: LayerOutput
    """
4323 4324 4325 4326
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4327
            size = vectors.size / weights.size
4328 4329
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4330 4331
    Layer(
        name=name,
4332
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4333
        size=size,
4334
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4335 4336 4337
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4338

4339

4340
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4341

4342

Z
zhangjinchao01 已提交
4343
@wrap_name_default()
L
luotao1 已提交
4344
@layer_support()
Z
zhangjinchao01 已提交
4345 4346 4347 4348 4349 4350 4351
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4352
                       num_channels=None,
L
luotao1 已提交
4353 4354
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4355 4356
    """
    Expand feature map to minibatch matrix.
4357
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4358
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4369
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4370 4371
    convolution neural network, and before recurrent neural network.

4372 4373 4374 4375
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4376
       block_expand = block_expand_layer(input=layer,
4377
                                         num_channels=128,
4378 4379 4380 4381 4382
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4383 4384
    :param input: The input layer.
    :type input: LayerOutput
4385 4386
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4401 4402
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4403
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4404 4405
    :rtype: LayerOutput
    """
4406 4407 4408
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4426 4427


4428 4429
@wrap_name_default()
@layer_support()
4430
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4431 4432 4433 4434 4435
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4436
    So groups should be larger than 1, and the num of channels should be able
4437 4438
    to devided by groups.

4439
    Please refer to Paper:
4440 4441 4442 4443
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4444

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4483 4484


Z
zhangjinchao01 已提交
4485
@wrap_name_default()
L
luotao1 已提交
4486
@layer_support()
Q
qijun 已提交
4487 4488 4489 4490 4491
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4492
              layer_attr=None):
Z
zhangjinchao01 已提交
4493 4494 4495 4496 4497
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4498 4499
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4500 4501
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4502 4503 4504 4505 4506 4507 4508 4509

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

Z
zhangjinchao01 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518
    The simple usage:

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4519
    :param input: The input layer.
Z
zhangjinchao01 已提交
4520 4521 4522
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4523
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4524
    :type size: int
4525 4526
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4527 4528
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4529 4530
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4531
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4532 4533 4534 4535
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4536 4537 4538 4539 4540
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4541
    Layer(
4542 4543 4544 4545
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4546
        inputs=[input.name, label.name],
Q
qijun 已提交
4547
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4548 4549
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4550

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
    <https://github.com/baidu-research/warp-ctc>` library, which is used in
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
    <https://arxiv.org/pdf/1512.02595v1.pdf>`, to compute Connectionist Temporal
    Classification (CTC) loss.

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
4574 4575 4576 4577 4578
          label needed by CTC, you need to use (num_classes + 1) as the input
          size. Thus, the size of both warp_ctc_layer and 'input' layer should
          be set to num_classes + 1.
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4579
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4580
          'linear' activation is expected instead in the 'input' layer.
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

    The simple usage:

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
4628
@wrap_name_default()
4629
@wrap_param_attr_default()
L
luotao1 已提交
4630
@layer_support()
Q
qijun 已提交
4631 4632 4633 4634 4635 4636
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
L
luotao1 已提交
4637
              layer_attr=None):
Z
zhangjinchao01 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
    """
    A layer for calculating the cost of sequential conditional random
    field model.

    The simple usage:

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
4653
    :type label: LayerOutput
Z
zhangjinchao01 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4663 4664
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4665
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4666 4667 4668 4669 4670
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
4671 4672 4673 4674 4675 4676
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
4677

Q
qijun 已提交
4678
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
4679 4680 4681 4682
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
4683 4684 4685 4686
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4687
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4688 4689 4690
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
4691 4692 4693 4694
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4695

4696

Z
zhangjinchao01 已提交
4697
@wrap_name_default()
4698
@wrap_param_attr_default()
L
luotao1 已提交
4699
@layer_support()
Q
qijun 已提交
4700 4701 4702 4703 4704
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
4705
                       layer_attr=None):
Z
zhangjinchao01 已提交
4706 4707 4708 4709 4710 4711 4712
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

L
Luo Tao 已提交
4713 4714 4715 4716 4717 4718 4719
    The simple usage:

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4730 4731
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4732
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4733 4734 4735 4736 4737 4738
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

4739
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
4740 4741 4742 4743
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
4744 4745 4746 4747
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4748
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4749 4750 4751
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
4752 4753 4754 4755
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4756

Q
qijun 已提交
4757

4758 4759 4760
@wrap_bias_attr_default(has_bias=True)
@wrap_name_default()
@layer_support()
Q
qijun 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769
def nce_layer(input,
              label,
              num_classes,
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

       cost = nce_layer(input=layer1, label=layer2, weight=layer3,
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
4791
    :type num_classes: int
4792
    :param num_neg_samples: number of negative samples. Default is 10.
4793
    :type num_neg_samples: int
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
        assert sum(neg_distribution) == 1
4814

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
    ipts_for_layer = []
    parents = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(each_input.name)
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
4830
    l = Layer(
4831 4832 4833 4834 4835 4836 4837
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4838 4839 4840 4841
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.NCE_LAYER, parents=parents, size=l.config.size)

4842

Z
zhangjinchao01 已提交
4843 4844 4845
"""
following are cost Layers.
"""
4846 4847


Z
zhangjinchao01 已提交
4848
@wrap_name_default()
L
luotao1 已提交
4849
@layer_support()
Q
qijun 已提交
4850 4851 4852 4853 4854 4855 4856
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
4857
    """
4858
    A cost Layer for learning to rank using gradient descent. Details can refer
4859 4860
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
4861 4862 4863 4864 4865
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
4866
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
4867

L
luotao02 已提交
4868
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
4869

L
luotao02 已提交
4870
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

    The simple usage:

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4900 4901
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4902
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
4915 4916 4917 4918 4919 4920
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4921

X
xuwei06 已提交
4922
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4923

4924

Z
zhangjinchao01 已提交
4925
@wrap_name_default()
L
luotao1 已提交
4926
@layer_support()
Q
qijun 已提交
4927 4928 4929 4930 4931 4932
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
    """
    lambdaCost for lambdaRank LTR approach.

    The simple usage:

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

4945
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
4957 4958 4959
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
4960 4961 4962
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4963 4964
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4965
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4966 4967
    :rtype: LayerOutput
    """
4968 4969 4970
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
4971 4972 4973 4974 4975 4976 4977
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4978

Q
qijun 已提交
4979 4980
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
4981

4982

Z
zhangjinchao01 已提交
4983
@wrap_name_default()
L
luotao1 已提交
4984
@layer_support()
4985 4986 4987 4988 4989 4990
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
4991 4992 4993 4994 4995
    """
    A loss layer for multi class entropy.

    .. code-block:: python

X
xuwei06 已提交
4996
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
4997
                            label=label_layer)
Z
zhangjinchao01 已提交
4998 4999 5000 5001 5002 5003 5004

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5005 5006
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5007
    :type coeff: float.
5008 5009 5010 5011
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5012 5013
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5014
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5015 5016 5017
    :rtype: LayerOutput.
    """

5018
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5019 5020 5021
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5022
        inputs=ipts,
Q
qijun 已提交
5023 5024
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5025
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5026

5027

Z
zhangjinchao01 已提交
5028
@wrap_name_default()
L
luotao1 已提交
5029
@layer_support()
Q
qijun 已提交
5030 5031 5032 5033
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5034 5035
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5036 5037
    """
    A loss layer for multi class entropy with selfnorm.
5038
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5039 5040 5041

    .. code-block:: python

X
xuwei06 已提交
5042
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5043
                                          label=label_layer)
Z
zhangjinchao01 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5055 5056
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5057
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5058 5059
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5060 5061 5062 5063 5064 5065 5066
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5067

Q
qijun 已提交
5068 5069 5070 5071 5072
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5073

5074

X
xuwei06 已提交
5075 5076 5077 5078 5079 5080 5081 5082
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

    .. code-block:: python

L
Luo Tao 已提交
5083
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5094
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5095 5096 5097 5098 5099
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5100

Q
qijun 已提交
5101
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5102 5103


Z
zhangjinchao01 已提交
5104
@wrap_name_default()
L
luotao1 已提交
5105 5106
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5107 5108 5109 5110 5111
    """
    A loss layer for huber loss.

    .. code-block:: python

X
xuwei06 已提交
5112
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5113
                         label=label_layer)
Z
zhangjinchao01 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5123 5124
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5125
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5126 5127
    :rtype: LayerOutput.
    """
5128 5129 5130
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5131 5132 5133 5134 5135 5136
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5137
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5138

5139

Z
zhangjinchao01 已提交
5140
@wrap_name_default()
L
luotao1 已提交
5141
@layer_support()
Q
qijun 已提交
5142 5143 5144 5145
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5146
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5147 5148 5149 5150 5151
    """
    A loss layer for multi binary label cross entropy.

    .. code-block:: python

X
xuwei06 已提交
5152
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5153
                                               label=label_layer)
Z
zhangjinchao01 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param type: The type of cost.
    :type type: basestring
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5165 5166
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5167
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5168 5169 5170
    :rtype: LayerOutput
    """

5171 5172
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)