elementwise_op.h 11.3 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
    template <typename Place, typename T>                                      \
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e);            \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
  }

template <class functor, typename Place, typename T>
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                    "Rank of first input must >= rank of second input.")

  if (x_dims == y_dims || product(y_dims) == 1) {
    functor f;
    f.template Run<Place, T>(x, y, z, ctx);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
    f.template RunBroadCast<Place, T>(x, y, z, ctx, pre, n);
    return;
  } else {
    functor f;
    f.template RunBroadCast2<Place, T>(x, y, z, ctx, pre, n, post);
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

template <typename Place, typename T, typename functor, typename functor1,
          typename broadcastfunctor, typename broadcast2functor>
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Input<Tensor>("Out");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

  auto place = ctx.GetEigenDevice<Place>();

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  if (product(y_dims) == 1) {
    functor1 f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  using Tensor = framework::Tensor;
Q
Qiao Longfei 已提交
205 206 207 208 209 210 211 212 213 214
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of elementwise op should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of elementwise op should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
215 216
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
                      "Rank of first input must >= rank of second input.")
Q
Qiao Longfei 已提交
217 218
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  }
};

class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ElementwiseOpMaker(framework::OpProto* proto,
                     framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", R"DOC(
The first input of elementwise op, it's a tensor of any dimensions.
)DOC");
    AddInput("Y", R"DOC(
The sencond input of elementwise op, it's a tensor and it's dimensions
must be small or equal to X's dimensions.
)DOC");
    AddAttr<int>("axis",
                 R"DOC(
Q
Qiao Longfei 已提交
236
When the shape(Y) does not equal the shape(X),Y will be broadcasted
G
gongweibao 已提交
237 238 239 240 241 242 243 244 245
to match the shape of X and axis should be dimension index Y in X
        )DOC")
        .SetDefault(-1)
        .EqualGreaterThan(-1);

    AddOutput("Out", "The output of elementwise op");
    comment_ = R"DOC(
Limited elementwise {name} operator.The equation is: Out = {equation}.
1. The shape of Y should be same with X or
Q
Qiao Longfei 已提交
246
2. Y's shape is a subset of X.
G
gongweibao 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
   Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.

   example:
      shape(X) = (2, 3, 4, 5), shape(Y) = (,)
      shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
      shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
      shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
      shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0

Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input X.
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string& src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string equation) {
    Replace(comment_, "{name}", name);
    Replace(comment_, "{equation}", equation);
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

 protected:
Q
Qiao Longfei 已提交
286 287 288 289 290 291 292 293 294
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
295 296 297 298

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Rank of first input must >= rank of second input.")

Q
Qiao Longfei 已提交
299 300 301 302
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
303
    }
Q
Qiao Longfei 已提交
304 305
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
306 307 308 309 310
    }
  }
};
}  // namespace operators
}  // namespace paddle