parallelizer.py 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21
import os
import sys
import json
import shlex
import copy
import pathlib
import subprocess
Z
zhaoyingli 已提交
22
import logging
23 24
import pickle
import time
25
import paddle
J
JZ-LIANG 已提交
26
from paddle.fluid.backward import append_backward
Z
zhaoyingli 已提交
27
from paddle.distributed.utils import get_logger
28
from paddle.distributed.fleet import cloud_utils
29
import paddle.fluid.core as core
30
from paddle.fluid import program_guard
J
JZ-LIANG 已提交
31
from paddle.distributed.passes import new_pass, PassContext
32 33
from .dist_context import DistributedContext
from .dist_context import get_default_distributed_context
34
from .dist_context import set_default_distributed_context
35
from .completion import Completer
36
from .partitioner import Partitioner
37
from .process_group import get_all_process_groups
38
from .process_group import get_process_group
J
JZ-LIANG 已提交
39
from .process_group import get_world_process_group
40
from .process_group import _g_process_group_map, ProcessGroup
41
from .utils import make_data_unshard
Z
zhaoyingli 已提交
42
from .utils import set_grad_var_shape
43
from .utils import print_program_with_dist_attr
44 45
from .utils import SerialProgramInfo
from .reshard import reshard, HAS_SENT, HAS_RECV, HAS_ALLGATHER
46 47
from .cluster import Cluster
from .mapper import mapping
48 49 50
from .dist_op import DistributedOperator
from .dist_tensor import DistributedTensor
from .planner import Planner
51
from paddle.distributed.passes import new_pass, PassContext
Z
zhaoyingli 已提交
52 53

_logger = get_logger(logging.INFO)
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


class AutoParallelizer:
    """
    AutoParallelizer is the main controller class to do the auto parallel process.
    And the auto parallel process will be triggered in the wrapped parallelize function.
    To facilitate the auto parallelization, it will contain information about program, cluster and the
    related context. In this basic version, the program information will be retrevied from 
    Fleet object, and the cluster information can be retrevied in the new created Cluster object,
    and the context information can be retrevied in the new created DistributedContext. 
    """

    def __init__(self, fleet):
        self._fleet = fleet
        self._optimizer = self._fleet.user_defined_optimizer
        self._dist_strategy = self._fleet._user_defined_strategy
70
        self._dist_context = DistributedContext()
71 72 73 74 75 76 77 78 79 80 81 82
        self._cluster = None
        self._cluster_topo_path = os.getenv("PADDLE_CLUSTER_TOPO_PATH", None)
        if self._cluster_topo_path is not None:
            self._cluster = Cluster()
            self._cluster.build_from_file(self._cluster_topo_path)
        # Prepare information for auto mapping
        self._rank_mapping_path = os.getenv("PADDLE_RANK_MAPPING_PATH", None)
        enable_auto_mapping_env = os.getenv("PADDLE_ENABLE_AUTO_MAPPING", None)
        if enable_auto_mapping_env is None:
            self._enable_auto_mapping = False
        else:
            self._enable_auto_mapping = True
83 84
        self._pass_context = PassContext()

85 86 87
        self._need_rank_mapping = os.getenv("PADDLE_NEED_RANK_MAPPING")
        self._need_rank_mapping = True if self._need_rank_mapping and \
            self._need_rank_mapping.lower() == 'true' else False
88
        self._pass_context = None
89

90 91 92 93 94 95 96 97 98 99
    def _remove_distributed_attrs(self, main_program):
        suffix = core.kAutoParallelSuffix()
        # distributed attributes for variable have been removed
        # in previous process.
        for block in main_program.blocks:
            for op in block.ops:
                for attr_name in op.attr_names:
                    if suffix in attr_name:
                        op._remove_attr(attr_name)

100 101
    def _apply_pre_optimization_passes(self, main_program, startup_program,
                                       loss, params_grads, no_grad_set):
J
JZ-LIANG 已提交
102
        # apply amp pass
103
        if self._dist_strategy.amp:
J
JZ-LIANG 已提交
104 105 106 107 108 109
            config = copy.deepcopy(self._dist_strategy.amp_configs)
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["loss"] = loss
            auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
            auto_parallel_amp_pass.apply([main_program], [startup_program],
J
JZ-LIANG 已提交
110
                                         self._pass_context)
111

J
JZ-LIANG 已提交
112
        # apply recompute pass
113
        if self._dist_strategy.recompute:
114 115 116 117 118 119 120 121
            config = copy.deepcopy(self._dist_strategy.recompute_configs)
            config["dist_context"] = self._dist_context
            config["no_grad_set"] = copy.deepcopy(no_grad_set)
            config["loss"] = loss
            auto_parallel_recompute_pass = new_pass("auto_parallel_recompute",
                                                    config)
            auto_parallel_recompute_pass.apply(
                [main_program], [startup_program], self._pass_context)
122 123 124 125

    def _generate_backward(self, main_program, startup_program, loss,
                           parameter_list, no_grad_set, callbacks):

J
JZ-LIANG 已提交
126 127 128 129 130 131 132
        with program_guard(main_program, startup_program):
            params_grads = append_backward(
                loss,
                parameter_list,
                no_grad_set,
                callbacks,
                distop_context=self._dist_context.dist_op_context)
133 134
        self._completer = Completer(self._dist_context)
        self._completer.complete_backward_annotation(main_program)
135 136 137 138 139

        return params_grads

    def _apply_optimize(self, main_program, startup_program, params_grads):

J
JZ-LIANG 已提交
140 141 142
        with program_guard(main_program, startup_program):
            optimize_ops = copy.deepcopy(self._optimizer).apply_gradients(
                params_grads)
143 144

        # update completion 
145 146
        self._completer = Completer(self._dist_context)
        self._completer.complete_update_annotation(main_program)
147 148 149

        return optimize_ops

150
    def _apply_post_optimization_passes(self, main_program, startup_program,
J
JZ-LIANG 已提交
151 152 153 154 155 156 157 158 159 160 161 162
                                        rank, params_grads):

        if self._dist_strategy.sharding:
            config = copy.deepcopy(self._dist_strategy.sharding_configs)
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["global_rank"] = rank
            auto_parallel_sharding_pass = new_pass("auto_parallel_sharding",
                                                   config)
            auto_parallel_sharding_pass.apply(
                [main_program], [startup_program], self._pass_context)

163 164 165 166 167 168 169 170 171
        if self._dist_strategy.gradient_merge:
            config = copy.deepcopy(self._dist_strategy.gradient_merge_configs)
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            auto_parallel_gradient_merge_pass = new_pass(
                "auto_parallel_gradient_merge_pass", config)
            auto_parallel_gradient_merge_pass.apply(
                [main_program], [startup_program], self._pass_context)

172 173
    def _get_dist_program(self, rank, dist_context=None, relaunch_phase=False):
        completed_main_program = None
174 175 176 177
        serial_main_program = self._main_program.clone()
        serial_startup_program = self._startup_program.clone()
        serial_loss = serial_main_program.global_block().var(self._loss.name)
        # generating serial 
178 179 180 181
        if dist_context is None:
            # Annotation completion
            self._dist_context = DistributedContext()
            _logger.info("Start annotation dist attr.")
182 183 184
            self._completer = Completer(self._dist_context)
            completed_main_program = self._completer.complete_forward_annotation(
                serial_main_program)
185
        else:
186
            completed_main_program = serial_main_program
187 188
            self._dist_context = copy.deepcopy(dist_context)

189 190 191 192 193
        # serial backward pass
        params_grads = self._generate_backward(
            completed_main_program, serial_startup_program, serial_loss,
            self._parameter_list, self._no_grad_set, self._callbacks)

J
JZ-LIANG 已提交
194
        # serial forward pass
195
        self._apply_pre_optimization_passes(completed_main_program,
J
JZ-LIANG 已提交
196
                                            serial_startup_program, serial_loss,
197
                                            params_grads, self._no_grad_set)
198 199 200 201 202 203 204 205 206
        # Logical partition 
        partitioner = Partitioner(self._dist_context, rank)
        dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
            completed_main_program, serial_startup_program, params_grads)

        # TODO refactor the placement of optimizer
        # generate optimize program
        dist_optimize_ops = self._apply_optimize(
            dist_main_prog, dist_startup_prog, dist_params_grads)
207

208
        set_grad_var_shape(dist_main_prog, self._dist_context)
209

210
        make_data_unshard(dist_main_prog, dist_startup_prog, self._dist_context)
211

212 213
        reshard(dist_main_prog, dist_startup_prog, rank, self._dist_context,
                dist_params_grads)
214

215
        self._apply_post_optimization_passes(dist_main_prog, dist_startup_prog,
J
JZ-LIANG 已提交
216
                                             rank, dist_params_grads)
217 218 219 220 221 222 223 224
        g_process_group_map = None
        if not relaunch_phase:
            g_process_group_map = copy.deepcopy(_g_process_group_map)
            HAS_SENT.clear()
            HAS_RECV.clear()
            HAS_ALLGATHER.clear()
            _g_process_group_map.clear()
            _g_process_group_map[0] = ProcessGroup(0, [])
Z
zhaoyingli 已提交
225 226
            for process_mesh in dist_context._process_meshes:
                _g_process_group_map[0].add_ranks(process_mesh.processes)
227
        return dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog, g_process_group_map
228

229 230
    def parallelize(self,
                    loss,
231
                    startup_program,
232
                    parameter_list=None,
233 234
                    no_grad_set=None,
                    callbacks=None):
235
        assert startup_program is not None
236 237 238 239 240
        self._loss = loss
        self._startup_program = startup_program
        self._main_program = loss.block.program
        self._parameter_list = parameter_list
        self._no_grad_set = no_grad_set
241
        self._callbacks = callbacks
242 243 244 245 246 247

        if self._enable_auto_mapping and self._need_rank_mapping:
            # Do the mapping pass before parallelization
            assert self._cluster is not None, \
                "The cluster must not be none when using auto mapping."
            dist_programs = {}
J
JZ-LIANG 已提交
248
            world_process_group = get_world_process_group()
249 250 251 252 253 254 255 256 257
            dist_context = None
            # auto search
            if self._dist_strategy.auto_search:
                logging.info("Start searching dist attr.")
                serial_program_info = SerialProgramInfo(
                    self._main_program, self._startup_program, self._loss,
                    self._optimizer, self._cluster)
                planner = Planner(
                    serial_program_info,
258
                    self,
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                    algorithm_config={"name": "mcmc",
                                      "max_search_times": 5})
                dist_context, _ = planner.search()
                logging.info("End searching dist attr.")

            # serialize the dist context by planner
            if dist_context is not None:
                logging.info("Start serialize searched dist attr")
                cwd = pathlib.Path().resolve()
                searched_dist_context_path = os.path.join(
                    cwd, f"searched_dist_context_{time.time()}.pkl")
                saved_dist_context = {}
                ops_dist_attr = {}
                tensors_dist_attr = {}
                for key, dist_op in dist_context._dist_ops_for_program.items():
                    ops_dist_attr[key] = dist_op.dist_attr
                for key, dist_tensor in dist_context._dist_tensors_for_program.items(
                ):
                    tensors_dist_attr[key] = dist_tensor.dist_attr
                saved_dist_context["ops_dist_attr"] = ops_dist_attr
                saved_dist_context["tensors_dist_attr"] = tensors_dist_attr
                saved_dist_context[
                    "process_meshes"] = dist_context._process_meshes
                with open(searched_dist_context_path,
                          "wb") as dist_context_file:
                    pickle.dump(saved_dist_context, dist_context_file)
                    os.environ[
                        'PADDLE_SEARCHED_DIST_CONTEXT_PATH'] = searched_dist_context_path
                    logging.info(
                        f"End serialize searched dist attr to {searched_dist_context_path}"
                    )

291
            for rank in world_process_group.ranks:
292 293 294
                dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog, g_process_group_map = self._get_dist_program(
                    rank, dist_context)
                dist_programs[rank] = [dist_main_prog, g_process_group_map]
295 296 297 298

            # Do the mapping between the distributed program graph and the cluster graph
            rank_mapping_dict = mapping(dist_programs, self._cluster)
            rank_mapping = list(rank_mapping_dict.values())
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            # Relaunch the training by using the rank mapping file
            with open(self._rank_mapping_path, "w") as rank_mapping_file:
                json.dump(rank_mapping, rank_mapping_file)

            enable_elastic = os.getenv("PADDLE_ENABLE_ELASTIC")
            enable_elastic = True if enable_elastic and enable_elastic.lower(
            ) == 'true' else False
            if enable_elastic:
                print("Auto mapping finished, now do elastic re-launch")
                sys.exit(paddle.distributed.fleet.elastic.manager.
                         ELASTIC_AUTO_PARALLEL_EXIT_CODE)

            original_cmd_args = os.getenv("PADDLE_ORIGINAL_CMD_ARGS")
            rank_mapping_args = " ".join(
                ["--rank_mapping_path", self._rank_mapping_path])
            if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
                coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
            else:
                coverage_args = []
            new_cmd_args = "-m paddle.distributed.fleet.launch" + " " + rank_mapping_args + " " + original_cmd_args
            new_cmd = [sys.executable, "-u"] + coverage_args + shlex.split(
                new_cmd_args)
            new_process = subprocess.Popen(new_cmd)
            new_process.wait()
            assert new_process.returncode == 0, \
                "Launch failed with rank mapping"
            print("Successfully do the second launch for auto mapping!")
            sys.exit(0)
        else:
            # Parallelization after the mapping pass
            rank = paddle.distributed.get_rank()
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
            dist_context = None
            searched_dist_context_path = os.getenv(
                "PADDLE_SEARCHED_DIST_CONTEXT_PATH", None)
            if searched_dist_context_path is not None:
                with open(searched_dist_context_path,
                          "rb") as dist_context_file:
                    saved_dist_context = pickle.load(dist_context_file)
                    dist_context = DistributedContext()
                    for op in self._main_program.global_block().ops:
                        dist_attr = saved_dist_context["ops_dist_attr"][
                            op.desc.id()]
                        dist_op = DistributedOperator(op, dist_attr)
                        dist_context.add_dist_op_for_program(dist_op)

                    vars = self._main_program.global_block().vars
                    for var in vars.values():
                        dist_attr = saved_dist_context["tensors_dist_attr"][
                            var.desc.id()]
                        dist_tensor = DistributedTensor(var, dist_attr)
                        dist_context.add_dist_tensor_for_program(dist_tensor)

                    dist_context._process_meshes = saved_dist_context[
                        "process_meshes"]

            else:
                if self._dist_strategy.auto_search:
                    serial_program_info = SerialProgramInfo(
                        self._main_program,
                        self._startup_program,
                        self._loss,
                        self._optimizer,
                        cluster=self._cluster)
                    planner = Planner(
                        serial_program_info,
365
                        self,
366 367 368 369 370 371 372 373 374 375 376 377 378
                        algorithm_config={
                            "name": "mcmc",
                            "max_search_times": 5
                        })
                    dist_context, _ = planner.search()

            # rebuild g_process_group
            if dist_context is not None:
                pg0 = get_process_group(0)
                for process_mesh in dist_context._process_meshes:
                    pg0.add_ranks(process_mesh.processes)
            dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog, _ = self._get_dist_program(
                rank, dist_context, relaunch_phase=True)
379

380 381 382 383 384 385 386 387 388 389
            # NOTE: This is a trick to fix hang in pipeline mode when dist context is searched by planner
            if self._dist_strategy.auto_search:
                is_pipeline = False
                for op in dist_main_prog.global_block().ops:
                    if op.type == "send_v2" or op.type == "recv_v2":
                        is_pipeline = True
                        break
                if is_pipeline:
                    with paddle.static.program_guard(dist_main_prog):
                        paddle.distributed.barrier()
390

391 392 393 394 395 396 397
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
                if rank not in process_group.ranks:
                    continue
                process_group.instantiate()
C
caozhou 已提交
398

399 400
            # Copy distributed info to the default context
            set_default_distributed_context(self._dist_context)
Z
zhaoyingli 已提交
401

402 403 404
            # The last step: remove all distributed attributes to be compatible
            # with inference.
            self._remove_distributed_attrs(dist_main_prog)
405

406
            return dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog
407 408 409 410 411 412 413 414 415 416 417

    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
            if k == "_main_program" or k == "_startup_program" or k == "_dist_context" or k == "_fleet" or k == "_loss":
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result