ConvProjection.cpp 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Stat.h"
#include "ConvProjection.h"

namespace paddle {

REGISTER_PROJECTION(conv, ConvProjection);

22
ThreadLocalD<std::vector<MemoryHandle *>> ConvProjection::convMem_;
23

24 25 26
ConvProjection::ConvProjection(const ProjectionConfig &config,
                               ParameterPtr parameter,
                               bool useGpu)
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    : Projection(config, parameter, useGpu) {
  CHECK(useGpu);  // only support GPU
  getConvParams();
  initCudnn();

  size_t height = filterH_ * filterW_ * channels_ / groups_;
  size_t width = numFilters_;
  weight_.reset(new Weight(height, width, parameter));
  weightOffset_ = height * width / groups_;
}

void ConvProjection::getConvParams() {
  const ConvConfig &conf = config_.conv_conf();
  paddingH_ = conf.padding_y();
  paddingW_ = conf.padding();

  strideH_ = conf.stride_y();
  strideW_ = conf.stride();

  filterH_ = conf.filter_size_y();
  filterW_ = conf.filter_size();

  configImgH_ = conf.img_size();
  configImgW_ = conf.img_size();

  channels_ = conf.channels();
  numFilters_ = config_.num_filters();

  groups_ = conf.groups();
  CHECK_EQ(channels_ % groups_, 0);
  CHECK_EQ(numFilters_ % groups_, 0);
}

void ConvProjection::initCudnn() {
61 62
  hl_create_filter_descriptor(
      &filterDesc_, channels_, numFilters_, filterH_, filterW_);
63 64
  hl_create_tensor_descriptor(&inputDesc_);
  hl_create_tensor_descriptor(&outputDesc_);
65 66 67 68 69 70 71
  hl_create_convolution_descriptor(&convDesc_,
                                   inputDesc_,
                                   filterDesc_,
                                   paddingH_,
                                   paddingW_,
                                   strideH_,
                                   strideW_);
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

  // initialize all to default algorithms
  fwdAlgo_ = 0;
  bwdFilterAlgo_ = 0;
  bwdDataAlgo_ = 0;
  fwdLimitBytes_ = 0;
  bwdDataLimitBytes_ = 0;
  bwdFilterLimitBytes_ = 0;
  workSpaceInBytes_ = 0;

  batchNum_ = 0;
  isSelectAlgo_ = false;
}

void ConvProjection::reshapeTensorDesc(int batchSize) {
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  hl_tensor_reshape(inputDesc_,
                    batchSize,
                    channels_,
                    imageH_,
                    imageW_,
                    channels_ * imageH_ * imageW_,
                    imageH_ * imageW_,
                    imageW_,
                    1);
  hl_reset_convolution_descriptor(convDesc_,
                                  inputDesc_,
                                  filterDesc_,
                                  paddingH_,
                                  paddingW_,
                                  strideH_,
                                  strideW_);
103 104 105 106 107 108 109 110 111 112 113 114 115

  // The stride between two consecutive images in ConvProjection may not be 1,
  // for example, in the case of layer ConcatenateLayer2 with two
  // ConvProjection, the stride is the output_size of layer ConcatenateLayer2.
  // So the calculation of nStride is different from CudnnConvLayer.
  // In fact, only "nStride = out_->value->getStride()" is ok.
  size_t nStride = numFilters_ * outputH_ * outputW_;
  if (out_->value->isContiguous()) {
    CHECK_EQ(nStride, out_->value->getWidth());
  } else {
    nStride = out_->value->getStride();
  }

116 117 118 119 120 121 122 123 124
  hl_tensor_reshape(outputDesc_,
                    batchSize,
                    numFilters_,
                    outputH_,
                    outputW_,
                    nStride,
                    outputH_ * outputW_,
                    outputW_,
                    1);
125 126 127 128 129 130 131 132 133 134 135
}

void ConvProjection::reshape(int batchSize) {
  size_t width = calOutputSize();
  CHECK_EQ(width, out_->value->getWidth());

  isSelectAlgo_ = (batchSize == batchNum_);
  batchNum_ = batchSize;

  if (!isSelectAlgo_) {
    reshapeTensorDesc(batchSize);
136 137 138 139 140 141 142 143 144 145
    hl_conv_workspace(inputDesc_,
                      outputDesc_,
                      filterDesc_,
                      convDesc_,
                      &fwdAlgo_,
                      &fwdLimitBytes_,
                      &bwdDataAlgo_,
                      &bwdDataLimitBytes_,
                      &bwdFilterAlgo_,
                      &bwdFilterLimitBytes_);
146 147 148 149 150 151 152

    size_t maxWorkSpace = 0;
    maxWorkSpace = std::max(fwdLimitBytes_, bwdDataLimitBytes_);
    maxWorkSpace = std::max(maxWorkSpace, bwdFilterLimitBytes_);
    workSpaceInBytes_ = maxWorkSpace;

    VLOG(3) << getName() << " Fwd / BwdData / BwdFilter algo: " << fwdAlgo_
153
            << " / " << bwdDataAlgo_ << " / " << bwdFilterAlgo_;
154 155 156 157 158 159 160 161 162
  }

  isSelectAlgo_ = true;
}

void ConvProjection::forward() {
  int batchSize = in_->value->getHeight();
  reshape(batchSize);

163
  void *workSpace = NULL;
164 165 166 167 168 169 170 171 172 173
  if (workSpaceInBytes_ > 0) {
    workSpace = getSpaceBytes(workSpaceInBytes_);
  }

  for (int g = 0; g < groups_; ++g) {
    REGISTER_TIMER_INFO("CudnnConvFwTimer", getName().c_str());

    real *inputData = in_->value->getData() + g * inputOffset_;
    real *wgtData = weight_->getW()->getData() + g * weightOffset_;
    real *outData = out_->value->getData() + g * outputOffset_;
174 175 176 177 178 179 180 181 182 183
    hl_convolution_forward(inputDesc_,
                           inputData,
                           outputDesc_,
                           outData,
                           filterDesc_,
                           wgtData,
                           convDesc_,
                           workSpace,
                           fwdLimitBytes_,
                           fwdAlgo_);
184 185 186
  }
}

187
void ConvProjection::backward(const UpdateCallback &callback) {
188 189
  REGISTER_TIMER_INFO("CudnnConvBpTimer", getName().c_str());

190
  void *workSpace = NULL;
191 192 193 194 195 196 197 198 199
  if (workSpaceInBytes_ > 0) {
    workSpace = getSpaceBytes(workSpaceInBytes_);
  }

  for (int g = 0; g < groups_; ++g) {
    real *outGrad = out_->grad->getData() + g * outputOffset_;
    if (weight_->getWGrad()) {
      real *inputData = in_->value->getData() + g * inputOffset_;
      real *weightGrad = weight_->getWGrad()->getData() + g * weightOffset_;
200 201 202 203 204 205 206 207 208 209
      hl_convolution_backward_filter(inputDesc_,
                                     inputData,
                                     outputDesc_,
                                     outGrad,
                                     filterDesc_,
                                     weightGrad,
                                     convDesc_,
                                     workSpace,
                                     bwdFilterLimitBytes_,
                                     bwdFilterAlgo_);
210 211 212 213 214
    }

    MatrixPtr preGrad = in_->grad;
    if (NULL != preGrad) {
      real *inputGrad = preGrad->getData() + g * inputOffset_;
215 216 217 218 219 220 221 222 223 224 225
      real *wgtData = weight_->getW()->getData() + g * weightOffset_;
      hl_convolution_backward_data(inputDesc_,
                                   inputGrad,
                                   outputDesc_,
                                   outGrad,
                                   filterDesc_,
                                   wgtData,
                                   convDesc_,
                                   workSpace,
                                   bwdDataLimitBytes_,
                                   bwdDataAlgo_);
226 227 228 229 230 231
    }
  }

  weight_->getParameterPtr()->incUpdate(callback);
}

232 233
void *ConvProjection::getSpaceBytes(size_t size) {
  std::vector<MemoryHandle *> &convMem = *convMem_;
234 235 236 237 238 239
  if (convMem.empty()) {
    int numDevices = hl_get_device_count();
    convMem.resize(numDevices);
  }

  int devId = hl_get_device();
240
  MemoryHandle **localMem = &(convMem[devId]);
241 242 243 244 245 246 247 248 249 250 251 252 253 254
  if (NULL == *localMem || size > (*localMem)->getAllocSize()) {
    *localMem = new GpuMemoryHandle(size);
  }
  return (*localMem)->getBuf();
}

ConvProjection::~ConvProjection() {
  hl_destroy_tensor_descriptor(inputDesc_);
  hl_destroy_tensor_descriptor(outputDesc_);
  hl_destroy_filter_descriptor(filterDesc_);
  hl_destroy_convolution_descriptor(convDesc_);
}

}  // namespace paddle