analysis_predictor.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/utils/singleton.h"

namespace paddle {

using inference::analysis::Argument;
using inference::Singleton;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;

/* This predictor is based on the original native predictor with IR and Analysis
 * support. It will optimize IR and Parameters in the runtime.
 * TODO(Superjomn) Replace the Navive predictor?
 */
class AnalysisPredictor : public NativePaddlePredictor {
 public:
  explicit AnalysisPredictor(const NativeConfig& config)
      : NativePaddlePredictor(config), config_(config) {}

  bool Init(const std::shared_ptr<framework::Scope>& parent_scope) {
    VLOG(3) << "Predictor::init()";
    if (config_.use_gpu) {
      place_ = paddle::platform::CUDAPlace(config_.device);
    } else {
      place_ = paddle::platform::CPUPlace();
    }
    PADDLE_ENFORCE(!parent_scope);
    if (parent_scope) {
      scope_ = parent_scope;
      sub_scope_ = &(parent_scope->NewScope());
    } else {
      paddle::framework::InitDevices(false);
      scope_.reset(new paddle::framework::Scope());
    }

    executor_.reset(new paddle::framework::Executor(place_));

    // Initialize the inference program
    if (!config_.model_dir.empty()) {
      // Parameters are saved in separate files sited in
      // the specified `dirname`.
      inference_program_ = paddle::inference::Load(
          executor_.get(), scope_.get(), config_.model_dir);
    } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
      // All parameters are saved in a single file.
      // The file names should be consistent with that used
      // in Python API `fluid.io.save_inference_model`.
      inference_program_ = paddle::inference::Load(
          executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
    } else {
      LOG(ERROR) << "fail to load inference model.";
      return false;
    }

    OptimizeInferenceProgram();
    ctx_ = executor_->Prepare(*inference_program_, 0);

    VLOG(5) << "to create variables";
    PADDLE_ENFORCE(scope_.get());
    executor_->CreateVariables(*inference_program_,
                               sub_scope_ ? sub_scope_ : scope_.get(), 0);

    // Get the feed_target_names and fetch_target_names
    feed_target_names_ = inference_program_->GetFeedTargetNames();
    fetch_target_names_ = inference_program_->GetFetchTargetNames();
    return true;
  }

  bool Run(const std::vector<PaddleTensor>& inputs,
           std::vector<PaddleTensor>* output_data,
           int batch_size = -1) override {
    return NativePaddlePredictor::Run(inputs, output_data, batch_size);
  }

  void OptimizeInferenceProgram() {
    LOG(INFO) << "optimize begin";
    FLAGS_IA_enable_ir = true;
    FLAGS_IA_enable_tensorrt_subgraph_engine = false;
    FLAGS_IA_output_storage_path = "";  // Don't output the model.
    // Analyze inference_program
    Argument argument;
    if (!config_.model_dir.empty()) {
      argument.fluid_model_dir.reset(new std::string(config_.model_dir));
    } else {
      PADDLE_ENFORCE(
          !config_.param_file.empty(),
          "Either model_dir or (param_file, prog_file) should be set.");
      PADDLE_ENFORCE(!config_.prog_file.empty());
      argument.fluid_model_program_path.reset(
          new std::string(config_.prog_file));
      argument.fluid_model_param_path.reset(
          new std::string(config_.param_file));
    }
    argument.origin_program_desc.reset(
        new ProgramDesc(*inference_program_->Proto()));
    Singleton<Analyzer>::Global().Run(&argument);
    CHECK(argument.transformed_program_desc);
    VLOG(5) << "to prepare executor";
    // LOG(INFO) << "transformed_parogram_desc " <<
    // argument.transformed_program_desc->DebugString();
    inference_program_.reset(
        new framework::ProgramDesc(*argument.transformed_program_desc));
    PADDLE_ENFORCE(argument.Has("param_scope"));
    // Update scope.
    scope_.reset(argument.Release<framework::Scope>("param_scope"));
    LOG(INFO) << "optimize end ==";
  }

 private:
  NativeConfig config_;
};

template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kAnalysis>(const NativeConfig& config) {
  VLOG(3) << "create NativePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
    PADDLE_ENFORCE_GT(
        config.fraction_of_gpu_memory, 0.f,
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         std::to_string(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
  if (!dynamic_cast<AnalysisPredictor*>(predictor.get())->Init(nullptr)) {
    return nullptr;
  }
  return predictor;
}

}  // namespace paddle

USE_PASS(fc_fuse_pass);
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);