You need to sign in or sign up before continuing.
graph_pattern_detector.h 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest_prod.h>
#endif

#include <numeric>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
24
#include "paddle/fluid/inference/analysis/dot.h"
25 26 27 28

namespace paddle {
namespace framework {
namespace ir {
29
class PDPattern;
30

31
// Some basic terminologies:
32 33 34 35 36 37 38 39 40
//   - PDPattern: a pattern defined as a data flow graph.
//   - PDNode: the node in the pattern, each PDNode represents an `ir::Node`
//     that meets some conditions defined in `PDNode.teller`.
//   - A pattern is defined with PDNodes with edges.

// Pattern detector node. This node helps to build a pattern.
struct PDNode {
  // tell whether an ir::Node* is a candidation for a PDNode.
  using teller_t = std::function<bool(Node*)>;
41
  enum class Type { kOp, kVar };
42

43 44 45
  // this link to others
  PDNode& LinksTo(const std::vector<PDNode*>& others);
  PDNode& LinksFrom(const std::vector<PDNode*>& others);
46 47 48 49 50 51

  bool Tell(Node* node) const {
    PADDLE_ENFORCE(teller_ != nullptr, "teller should be set for a PDNode");
    return teller_(node);
  }

52 53 54
  bool IsOp() const { return type_ == Type::kOp; }
  bool IsVar() const { return type_ == Type::kVar; }

55 56 57 58 59 60
  const std::string& name() const { return name_; }

  PDNode(const PDNode&) = delete;
  PDNode& operator=(const PDNode&) = delete;

 private:
61 62 63 64 65 66 67 68 69 70 71 72 73
  PDNode(teller_t&& teller, PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : teller_(std::move(teller)),
        pattern_(pattern),
        name_(name),
        type_(type) {
    PADDLE_ENFORCE(teller_ != nullptr, "invalid teller functer is set.");
  }

  PDNode(PDNode&& other) = default;

  friend class PDPattern;

74
  teller_t teller_;
75
  PDPattern* pattern_;
76
  std::string name_;
77
  Type type_;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
};

/*
 * A pattern in a graph, which defined with PDNode and edges. Most graph
 * patterns can be divided into PDNodes and link relations between them.
 *
 * For example, the FC fusion need to filter the MUL and ELEMENTWISE_ADD
 * operators from the computation graph, the MUL's output should have only one
 * consumer which is the ELEMENTWISE_ADD.
 * This pattern can be defined as with the following pseudo codes
 *
 *     // Create two operator PDNodes.
 *     MUL = PDPattern.NewNode()
 *     ELE = PDPattern.NewNode()
 *     // Create the variable PDNodes.
 *     MUL_out = PDPattern.NewNode()
 *     // Add teller to define some rules that help to filter the target Nodes.
 *     MUL.teller = lambda(node): node->IsOp() && node->Op()->Type == "mul";
 *     ELE.teller = lambda(node): \
 *                        node->IsOp() && node->Op()->Type == "elementwise_add";
 *     MUL_out.teller = lambda(node): node->IsVar() && (MUL in node->inputs)
 *                                                  && (ELE in node->outputs)
 *
 * One can add more specific tellers for PDNodes or edges, both the Operator
 * and Variable Nodes can be ruled in PDNode.teller.
 *
 * PDPattern can record the general patterns, such as the pattern represents
 *   - Op in CPU -> Op in GPU -> Op in CPU, to findout the IO abnormal place.
 *   - Ops whose inputs and outputs share the same variables
 */
class PDPattern {
 public:
  using edge_t = std::pair<PDNode*, PDNode*>;

  void AddEdge(PDNode* a, PDNode* b);

114 115
  PDNode* NewNode(PDNode::teller_t&& teller, const std::string& name = NewID());
  PDNode* RetriveNode(const std::string& id) const;
116 117 118 119

  const std::vector<std::unique_ptr<PDNode>>& nodes() const { return nodes_; }
  const std::vector<edge_t>& edges() const { return edges_; }

120 121
  std::string DotString() const;

122 123 124 125 126 127
 private:
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(PDPattern, AddEdge);
  FRIEND_TEST(PDPattern, NewNode);
#endif

128 129
  static std::string NewID() { return "pdnode-" + std::to_string(id_++); }

130 131
  std::vector<std::unique_ptr<PDNode>> nodes_;
  std::vector<edge_t> edges_;
132 133
  std::unordered_map<std::string, PDNode*> node_map_;
  static size_t id_;
134 135 136
};

/*
137
 * GraphPatternDetector helps to detect the specific patterns in the graph.
138 139 140 141 142 143 144 145 146 147 148
 * Input a pattern, output a list of the matched subgraphs/nodes.
 * This helper can be used to support fuse(conv+batchnorm => batchnorm e.g.).
 *
 * The algorithm has three phases:
 *   1. Mark the nodes that match the defined PDNodes in a PDPattern,
 *   2. Extend a PDNode to subgraphs by deducing the connection relation defined
 *      in PAPattern(the edges),
 *   3. Get the filtered subgraphs and treat them with a pre-defined handler.
 *
 * Usage:
 *    // Create a detector
149
 *    GraphPatternDetector detector;
150 151 152 153 154 155 156 157
 *    // Define the detector's pattern, by adding PDNode and define the edges.
 *    auto* node0 = detector.mutable_pattern().AddNode(...)
 *    auto* node1 = detector.mutable_pattern().AddNode(...)
 *    node0->teller = some lambda.
 *    node1->teller = some lambda.
 *    detector.mutable_pattern().AddEdge(node0, node1);
 *    // Create an handler, to define the behavior of treating the filtered
 *    // subgraphs that comply with the patterns.
158
 *    GraphPatternDetector::handle_t handler = some labmda
159 160 161
 *    // Execute the detector.
 *    detector(&graph, handler);
 */
162
class GraphPatternDetector {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
 public:
  using subgraph_t = std::unordered_map<PDNode*, Node*>;

  // Operate on the detected pattern.
  using handle_t =
      std::function<void(const subgraph_t& /*hitted pattern*/, Graph*)>;

  void operator()(Graph* graph, handle_t handler);

  const PDPattern& pattern() const { return pattern_; }
  PDPattern* mutable_pattern() { return &pattern_; }

 private:
  // Mark the nodes that fits the pattern.
  bool MarkPDNodesInGraph(const ir::Graph& graph);

  // Detect all the pattern and output the hit records.
  std::vector<subgraph_t> DetectPatterns();

  // Remove duplicate patterns.
  void UniquePatterns(std::vector<subgraph_t>* subgraphs);

  // Remove overlapped match subgraphs, when overlapped, keep the previous one.
  void RemoveOverlappedMatch(std::vector<subgraph_t>* subgraphs);

#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(GraphPatternDetecter, MarkPDNodesInGraph);
  FRIEND_TEST(GraphPatternDetecter, DetectPatterns);
#endif

 private:
  using hit_rcd_t =
      std::pair<Node* /*node in graph*/, PDNode* /*node in pattern*/>;
  PDPattern pattern_;
  std::unordered_map<const PDNode*, std::unordered_set<Node*>> pdnodes2nodes_;
};

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
// some helper methods.

// Op's input.
static bool VarLinksToOp(Node* node, const std::string& op_type) {
  for (auto* out : node->outputs) {
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

// Op's output.
static bool VarLinksFromOp(Node* node, const std::string& op_type) {
  for (auto* out : node->inputs) {
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

// Check whether a var node is a op node's nth input.
static bool IsNthInput(Node* var, Node* op, const std::string& argument,
                       size_t nth) {
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->inputs.size() <= nth) return false;
  return var->Name() == op->Op()->Input(argument)[nth];
}

static void GraphSafeRemoveNodes(Graph* graph,
                                 const std::unordered_set<const Node*>& nodes) {
  for (auto* node : nodes) {
    graph->RemoveNode(const_cast<Node*>(node));
  }

  for (auto* node : graph->Nodes()) {
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
        it = const_cast<Node*>(node)->inputs.erase(it);
      } else
        it++;
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
        it = const_cast<Node*>(node)->outputs.erase(it);
      } else
        it++;
    }
  }
}

253 254 255
}  // namespace ir
}  // namespace framework
}  // namespace paddle