pad_constant_like_op.h 2.9 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/padding.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class PadConstantLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto in_x = context.Input<framework::Tensor>("X");
    auto in_y = context.Input<framework::Tensor>("Y");
    auto* out = context.Output<framework::Tensor>("Out");

    if (in_x->dims() == in_y->dims()) {
37
      framework::TensorCopy(*in_y, context.GetPlace(), out);
C
chengduo 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
      return;
    }

    T pad_value = context.Attr<T>("pad_value");
    out->mutable_data<T>(context.GetPlace());

    int rank = context.Input<framework::Tensor>("X")->dims().size();

    std::vector<int> pads(rank * 2, 0);

    for (int j = 0; j < rank; ++j) {
      pads[j * 2] = 0;
      pads[j * 2 + 1] = static_cast<int>(in_x->dims()[j] - in_y->dims()[j]);
    }

    math::PaddingFunctor<DeviceContext, T>(rank, context, pads, pad_value,
                                           *in_y, out);
  }
};

template <typename DeviceContext, typename T>
class PadConstantLikeGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto in_y = context.Input<framework::Tensor>("Y");
    auto in_dout =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_y = context.Output<framework::Tensor>(framework::GradVarName("Y"));

    if (d_y == nullptr) {
      return;
    }

    if (in_dout->dims() == in_y->dims()) {
72
      framework::TensorCopy(*in_dout, context.GetPlace(), d_y);
C
chengduo 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
      return;
    }

    d_y->mutable_data<T>(context.GetPlace());
    int rank = in_dout->dims().size();

    std::vector<int> pads(static_cast<size_t>(rank) * 2, 0);
    for (int j = 0; j < rank; ++j) {
      pads[j * 2] = 0;
      pads[j * 2 + 1] = static_cast<int>(in_dout->dims()[j] - in_y->dims()[j]);
    }

    math::PaddingGradFunctor<DeviceContext, T>(rank, context, pads, *in_dout,
                                               d_y);
  }
};

}  // namespace operators
}  // namespace paddle