stack_op.h 3.7 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
S
sneaxiy 已提交
14

X
Xin Pan 已提交
15
#pragma once
S
sneaxiy 已提交
16

17
#include <memory>
X
Xin Pan 已提交
18
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
19 20
#include "paddle/fluid/platform/for_range.h"

X
Xin Pan 已提交
21 22 23
namespace paddle {
namespace operators {

S
sneaxiy 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename VecDxType, typename T>
struct StackGradFunctor {
  HOSTDEVICE StackGradFunctor(const VecDxType &dx, const T *dy, int n, int post)
      : dx_(dx), dy_(dy), n_(n), post_(post) {}

  HOSTDEVICE void operator()(int idx) {
    int i = idx / (n_ * post_);
    int which_x = idx / post_ - i * n_;
    int x_index = i * post_ + idx % post_;
    dx_[which_x][x_index] = dy_[idx];
  }

 private:
  VecDxType dx_;
  const T *dy_;
  int n_;
  int post_;
};

template <typename DeviceContext, typename VecDxType, typename T>
static inline void StackGradFunctorForRange(const DeviceContext &ctx,
                                            const VecDxType &dx, const T *dy,
                                            int total_num, int n, int post) {
  platform::ForRange<DeviceContext> for_range(ctx, total_num);
  for_range(StackGradFunctor<VecDxType, T>(dx, dy, n, post));
}

template <typename DeviceContext, typename T>
X
Xin Pan 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class StackKernel : public framework::OpKernel<T> {
  using Tensor = framework::LoDTensor;

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto x = ctx.MultiInput<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Y");

    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis += (x[0]->dims().size() + 1);

    int n = static_cast<int>(x.size());
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
    std::vector<const T *> x_datas(n);
    for (int i = 0; i < n; i++) x_datas[i] = x[i]->data<T>();

    int pre = 1, post = 1;
    auto &dim = x[0]->dims();
    for (auto i = 0; i < axis; ++i) pre *= dim[i];
    for (auto i = axis; i < dim.size(); ++i) post *= dim[i];

S
sneaxiy 已提交
73
    auto x_data_arr = x_datas.data();
Y
Yihua Xu 已提交
74

Y
Yihua Xu 已提交
75 76 77 78 79 80 81 82 83 84
    size_t x_offset = 0;
    size_t y_offset = 0;
    for (int i = 0; i < pre; i++) {
      for (int j = 0; j < n; j++) {
        std::memcpy(y_data + y_offset, x_data_arr[j] + x_offset,
                    post * sizeof(T));
        y_offset += post;
      }
      x_offset += post;
    }
X
Xin Pan 已提交
85 86 87
  }
};

S
sneaxiy 已提交
88
template <typename DeviceContext, typename T>
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100
class StackGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::LoDTensor;

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto dx = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis += dy->dims().size();

    int n = dy->dims()[axis];
    std::vector<T *> dx_datas(n);  // NOLINT
S
sneaxiy 已提交
101
    for (int i = 0; i < n; i++) {
X
Xin Pan 已提交
102
      dx_datas[i] = dx[i]->mutable_data<T>(ctx.GetPlace());
S
sneaxiy 已提交
103
    }
X
Xin Pan 已提交
104 105 106 107
    auto dy_data = dy->data<T>();

    int pre = 1;
    for (int i = 0; i < axis; ++i) pre *= dy->dims()[i];
S
sneaxiy 已提交
108 109 110 111
    int total_num = dy->numel();
    int post = total_num / (n * pre);

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
S
sneaxiy 已提交
112 113
    auto dx_data_arr = dx_datas.data();
    StackGradFunctorForRange(dev_ctx, dx_data_arr, dy_data, total_num, n, post);
X
Xin Pan 已提交
114 115 116 117 118
  }
};

}  // namespace operators
}  // namespace paddle