operator.cc 36.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
21
#include "paddle/fluid/framework/lod_tensor.h"
22
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/shape_inference.h"
24
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/var_type.h"
26
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
27

D
dzhwinter 已提交
28
DECLARE_bool(benchmark);
C
chengduoZH 已提交
29 30 31
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
32

Q
Qiao Longfei 已提交
33 34 35
namespace paddle {
namespace framework {

36 37 38 39 40 41
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
42

Q
qiaolongfei 已提交
43 44
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
45
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
46
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
47
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
48 49 50 51 52
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

53 54
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
55
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
56 57
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
58 59
  }

M
minqiyang 已提交
60 61
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
62
    if (UNLIKELY(!tensor.IsInitialized())) {
63
      return DDim({-1});
64
    }
M
minqiyang 已提交
65 66 67 68 69 70 71
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
72 73 74 75 76
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
77 78 79 80 81 82
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
83 84 85 86 87
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
88

M
minqiyang 已提交
89 90 91
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
92 93
      return "";
    }
Y
Yu Yang 已提交
94
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
95
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
96 97 98 99
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
100
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
101
    }
D
dzhwinter 已提交
102 103 104 105 106
  } else {
    return "";
  }
}

107 108 109 110 111 112
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
113 114
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
115 116 117 118 119
  }

  return -1;
}

Q
Qiao Longfei 已提交
120 121 122 123 124 125 126 127
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
128 129 130
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
131 132
      return default_lod;
    }
M
minqiyang 已提交
133
    return tensor.lod();
Q
Qiao Longfei 已提交
134 135 136 137 138
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
139 140 141 142 143
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
144
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
145 146 147 148 149 150
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
151
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
152 153 154 155 156 157
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

158
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
159 160
  VLOG(4) << place << " " << DebugStringEx(&scope);
  if (platform::is_gpu_place(place)) {
161
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
162
    PADDLE_THROW("Cannot run operator on place %s", place);
163
#else
P
peizhilin 已提交
164 165
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
166
#endif
P
peizhilin 已提交
167
  }
P
peizhilin 已提交
168

P
peizhilin 已提交
169 170 171 172 173 174 175 176 177
  // The profile has a process-wide mutex, results in serious performance issue
  // in concurrency scenerio. Here use an `if` to fix this issue.
  // Please not remove the `if`, ask @Superjomn if there are any concern.
  if (platform::IsProfileEnabled()) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
  } else {
    RunImpl(scope, place);
178
  }
P
peizhilin 已提交
179
  VLOG(3) << place << " " << DebugStringEx(&scope);
180 181
}

182
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
183
  return inputs_.find(name) != inputs_.end();
184 185
}

186
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
187
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
188
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
189 190
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
191
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
192 193
}

Y
Yu Yang 已提交
194 195
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
196
  auto it = inputs_.find(name);
197 198
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
199
  return it->second;
Y
Yan Chunwei 已提交
200 201
}

202
bool OperatorBase::HasOutputs(const std::string& name) const {
203
  if (outputs_.find(name) != outputs_.end()) {
204 205 206 207 208 209
    return true;
  } else {
    return false;
  }
}

210
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
211
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
212
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
213 214
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
215
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
216 217
}

Y
Yu Yang 已提交
218 219
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
220
  auto it = outputs_.find(name);
221 222
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
223
  return it->second;
Y
Yan Chunwei 已提交
224 225
}

226
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
227
  std::stringstream ss;
Y
Yu Yang 已提交
228
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
229 230
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
231 232
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
233 234
      auto var_name = input.second[i];
      ss << var_name;
235
      if (scope) {
Q
Qiao Longfei 已提交
236 237 238 239 240 241 242 243 244 245 246
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
247
        }
248
      }
Y
Yu Yang 已提交
249 250 251
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
252
    }
Y
Yu Yang 已提交
253
    ss << "]";
Y
Yu Yang 已提交
254 255
    ++it;
    if (it != inputs_.end()) {
256 257
      ss << ", ";
    }
Q
Qiao Longfei 已提交
258
  }
Y
Yu Yang 已提交
259
  ss << "}, outputs:{";
Y
Yu Yang 已提交
260 261
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
262 263
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
264 265
      auto var_name = output.second[i];
      ss << var_name;
266
      if (scope) {
Q
Qiao Longfei 已提交
267 268 269 270 271 272 273
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
274 275
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
276 277
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
278
        }
279
      }
Y
Yu Yang 已提交
280 281 282
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
283
    }
Y
Yu Yang 已提交
284
    ss << "]";
Y
Yu Yang 已提交
285 286
    ++it;
    if (it != outputs_.end()) {
287 288
      ss << ", ";
    }
Q
Qiao Longfei 已提交
289
  }
Y
Yu Yang 已提交
290
  ss << "}.";
Q
Qiao Longfei 已提交
291 292 293
  return ss.str();
}

Y
Yu Yang 已提交
294
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
295 296
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
297 298
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
299 300
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
301
}
302

Q
qijun 已提交
303 304
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
305
  for (auto& o : inputs_) {
Q
qijun 已提交
306 307 308 309 310 311
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320 321
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
322
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
323 324

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
325
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
326 327 328 329 330 331 332 333 334
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
335 336
}

337 338 339
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
340
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
341 342

  for (auto& in : op_info->Proto().inputs()) {
343 344 345 346
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
347 348 349
  }

  for (auto& out : op_info->Proto().outputs()) {
350 351 352 353 354
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
371
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
372
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
373 374
}

C
chengduo 已提交
375
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
376 377 378 379
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
380
  } else {
Y
Yang Yang 已提交
381
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
C
chengduo 已提交
382
                 var.Type().name());
Q
QI JUN 已提交
383 384 385
  }
}

C
chengduo 已提交
386
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
387
  if (var->IsType<LoDTensor>()) {
388
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
389
  } else if (var->IsType<SelectedRows>()) {
390
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
391
  } else {
Y
Yang Yang 已提交
392 393
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
394 395 396
  }
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
429 430 431 432 433 434 435 436 437 438
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
439 440 441 442
const Variable* ExecutionContext::LegacyInputVar(
    const std::string& name) const {
  auto ipt = op_.Input(name);
  return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
X
Xin Pan 已提交
443 444
}

X
clean  
Xin Pan 已提交
445
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
446 447 448 449 450 451 452 453 454
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
455 456 457 458 459
Variable* ExecutionContext::LegacyOutputVar(const std::string& name) const {
  auto opt = op_.Output(name);
  return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
}

460
template <>
461
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
462
  return Input<LoDTensor>(name);
463 464
}

X
Xin Pan 已提交
465
template <>
X
clean  
Xin Pan 已提交
466
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
467
    const std::string& name) const {
X
clean  
Xin Pan 已提交
468
  return LegacyInput<LoDTensor>(name);
X
Xin Pan 已提交
469 470
}

471
template <>
472
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
473
    const std::string& name) const {
X
Xin Pan 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
                       var->Type().name());
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const {
496 497 498
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
499
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
500
                 [&](const std::string& sub_name) -> const Tensor* {
501
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
502 503 504 505 506 507
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return &(var->Get<LoDTensor>());
508
                 });
509 510 511 512
  return res;
}

template <>
513
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
514
  return Output<LoDTensor>(name);
515 516
}

X
Xin Pan 已提交
517
template <>
X
clean  
Xin Pan 已提交
518 519
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
  return LegacyOutput<LoDTensor>(name);
X
Xin Pan 已提交
520 521
}

522
template <>
523
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
524 525 526 527
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
528
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
529
                 [&](const std::string& sub_name) -> Tensor* {
530
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
531 532 533 534 535 536
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return var->GetMutable<LoDTensor>();
537
                 });
538 539 540
  return res;
}

Y
Yu Yang 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

556 557
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
558 559 560
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
      : op_(op), scope_(scope), ctx_(ctx) {}
561 562

  bool HasInput(const std::string& name) const override {
563
    // has only one input
X
Xin Pan 已提交
564
    const auto& ins = ctx_.inputs;
565 566
    auto it = ins.find(name);
    if (it == ins.end()) {
567 568
      return false;
    }
569
    const auto& in = it->second;
X
Xin Pan 已提交
570
    if (in.size() == 0) return false;
T
tensor-tang 已提交
571
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
572
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
573
    return in[0] != nullptr;
574 575 576
  }

  bool HasOutput(const std::string& name) const override {
577
    // has only one output
X
Xin Pan 已提交
578
    const auto& outs = ctx_.outputs;
579 580
    auto it = outs.find(name);
    if (it == outs.end()) {
581 582
      return false;
    }
583
    const auto& out = it->second;
X
Xin Pan 已提交
584
    if (out.size() == 0) {
585 586
      return false;
    }
T
tensor-tang 已提交
587 588
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
589
    return out[0] != nullptr;
590 591 592
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
593 594
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
595
    if (it == ins.end() || it->second.empty()) {
596 597
      return false;
    }
X
Xin Pan 已提交
598 599
    for (auto& input : it->second) {
      if (input == nullptr) {
600 601 602 603 604 605 606
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
607 608
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
609
    if (it == outs.end() || it->second.empty()) {
610 611
      return false;
    }
X
Xin Pan 已提交
612 613
    for (auto& output : it->second) {
      if (output == nullptr) {
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

632 633
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
634 635 636 637 638 639 640 641 642
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
643 644

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
645
                   "The type of %s and %s is not the same.", in, out);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
664 665
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
666 667 668 669 670 671 672 673
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
674
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
675
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
676 677 678 679 680
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
681

M
mozga-intel 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
701 702
  }

C
chengduo 已提交
703 704 705 706 707
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

708 709
  bool IsRuntime() const override { return true; }

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
742 743 744 745 746 747 748 749 750 751
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

766
 protected:
X
Xin Pan 已提交
767
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
768
    PADDLE_ENFORCE_NOT_NULL(var);
769 770 771 772 773
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
774
      PADDLE_THROW(
X
Xin Pan 已提交
775
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
776
          "type_id is %s.",
X
Xin Pan 已提交
777
          var->Type().name());
F
fengjiayi 已提交
778 779 780
    }
  }

X
Xin Pan 已提交
781 782 783 784 785 786 787 788
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
789
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
790
    PADDLE_THROW("Only compile time support this method");
791 792
  }

X
Xin Pan 已提交
793
  void SetDim(Variable* var, const DDim& dim) {
794 795 796 797 798
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                   var->Type().name());
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
813 814 815
    }
  }

F
fengjiayi 已提交
816 817
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
818
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
819 820
  }

X
Xin Pan 已提交
821 822 823 824 825 826 827 828 829 830 831
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
832 833 834
    return ToVarType(var->Type());
  }

835 836 837 838 839 840 841 842 843 844 845 846 847 848
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
849 850
  }

851 852
  const OperatorBase& op_;
  const Scope& scope_;
X
Xin Pan 已提交
853
  const RuntimeContext& ctx_;
854 855
};

C
chengduoZH 已提交
856 857 858 859 860
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
861 862
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
863 864 865 866 867 868 869 870
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

B
baojun-nervana 已提交
871
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
872 873 874
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
875 876 877
  this->InferShape(&infer_shape_ctx);
}

878 879
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
X
Xin Pan 已提交
880
  RuntimeContext ctx(Inputs(), Outputs(), scope);
Y
Yu Yang 已提交
881
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
882
  auto* dev_ctx = pool.Get(place);
883

884 885 886 887
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
888 889
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
890 891
  }

Q
qiaolongfei 已提交
892 893
  OpKernelMap& kernels = kernels_iter->second;

X
Xin Pan 已提交
894 895
  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx));
M
minqiyang 已提交
896
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
897

898
  auto kernel_iter = kernels.find(expected_kernel_key);
899
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
900
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
901 902
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
903
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
904 905 906 907 908
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
909 910 911 912 913
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
914 915 916
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
X
Xin Pan 已提交
917
      PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx);
918

Y
yuyang18 已提交
919 920 921 922 923 924
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
925
  }
Q
QI JUN 已提交
926

X
Xin Pan 已提交
927
  RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx);
X
Xin Pan 已提交
928
  this->InferShape(&infer_shape_ctx);
X
clean  
Xin Pan 已提交
929 930
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
X
Xin Pan 已提交
931
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx, ctx));
D
dzhwinter 已提交
932

Y
yuyang18 已提交
933 934 935
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
936 937
  }

D
dzhwinter 已提交
938
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
939
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
940
    dev_ctx->Wait();
D
dzhwinter 已提交
941
  }
C
chengduoZH 已提交
942 943 944

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
945
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
946 947 948
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
949 950
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
951 952 953
      }
    }
  }
Q
Qiao Longfei 已提交
954
}
X
Xin Pan 已提交
955

Y
yuyang18 已提交
956 957 958 959
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
960
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
961 962
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
963 964 965
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
966
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
967 968 969 970
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
971
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
972
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
973 974
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
975 976
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
X
Xin Pan 已提交
977 978 979 980
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
981
      auto* var = input_vars[i];
X
Xin Pan 已提交
982

Y
yuyang18 已提交
983
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
984
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
985 986 987
        continue;
      }

C
chengduo 已提交
988
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1006 1007
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1024
      }
1025
      if (!new_scope) {
Y
yuyang18 已提交
1026 1027 1028 1029
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1030
      input_vars[i] = trans_var;
1031

Y
yuyang18 已提交
1032
      Tensor out;
Y
yuyang18 已提交
1033
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1034 1035 1036 1037 1038 1039
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1040

1041
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1042 1043 1044
    const ExecutionContext& ctx) const {
  int data_type = -1;
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1045 1046 1047
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
X
Xin Pan 已提交
1058 1059
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
                         input.first, i);
Y
Yu Yang 已提交
1060
          int tmp = static_cast<int>(t->type());
1061 1062
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
X
Xin Pan 已提交
1063 1064
              "DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
              Type(), data_type, tmp);
Y
Yu Yang 已提交
1065 1066 1067 1068 1069 1070
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
1071
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
1072
}
1073

1074 1075 1076 1077 1078 1079 1080 1081
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1082 1083
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1084 1085
}

Q
Qiao Longfei 已提交
1086
}  // namespace framework
L
liaogang 已提交
1087
}  // namespace paddle