test_imperative_recurrent_usage.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
import paddle
20 21 22
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding
import paddle.fluid.framework as framework
23
from paddle.fluid.framework import _test_eager_guard
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
import numpy as np
import six


class RecurrentTest(fluid.Layer):
    def __init__(self, name_scope):
        super(RecurrentTest, self).__init__(name_scope)

    def forward(self, in1, in2):
        out = fluid.layers.mul(in1, in2)
        sum_out = fluid.layers.reduce_sum(out)
        return sum_out, out


class TestRecurrentFeed(unittest.TestCase):
    def test_recurrent_feed(self):

        seed = 90
        original_np1 = np.arange(1, 5).reshape(2, 2).astype("float32")
        original_np2 = np.arange(5, 9).reshape(2, 2).astype("float32")
        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            original_in1 = to_variable(original_np1)
            original_in2 = to_variable(original_np2)
52 53
            original_in1.stop_gradient = False
            original_in2.stop_gradient = False
54 55 56 57 58 59 60
            rt = RecurrentTest("RecurrentTest")

            for i in range(3):
                sum_out, out = rt(original_in1, original_in2)
                original_in1 = out
                sum_out_value = sum_out.numpy()
                sum_out.backward()
61
                dyout = out.gradient()
62
                original_in1.stop_gradient = True
63 64
                rt.clear_gradients()

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        with fluid.dygraph.guard():
            with _test_eager_guard():
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed
                original_in1 = to_variable(original_np1)
                original_in2 = to_variable(original_np2)
                original_in1.stop_gradient = False
                original_in2.stop_gradient = False
                rt = RecurrentTest("RecurrentTest")

                for i in range(3):
                    sum_out, out = rt(original_in1, original_in2)
                    original_in1 = out
                    eager_sum_out_value = sum_out.numpy()
                    sum_out.backward()
                    eager_dyout = out.gradient()
                    original_in1.stop_gradient = True
                    rt.clear_gradients()

84 85 86 87 88 89 90 91 92 93 94 95 96
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            in1 = fluid.layers.data(
                name="inp1", shape=[2, 2], append_batch_size=False)
            in2 = fluid.layers.data(
                name="inp2", shape=[2, 2], append_batch_size=False)
            rt1 = RecurrentTest("RecurrentTest")
            static_sum_out, static_out = rt1(in1, in2)
            fluid.backward.append_backward(static_sum_out)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

97 98 99
            static_dout = fluid.default_main_program().block(
                0)._find_var_recursive(static_out.name + "@GRAD")
            fetch_list = [static_sum_out, static_out, static_dout]
100 101 102 103 104 105 106 107
            for i in range(3):
                out = exe.run(
                    fluid.default_main_program(),
                    feed={"inp1": original_np1,
                          "inp2": original_np2},
                    fetch_list=fetch_list)
                static_out_value = out[1]
                static_sum_out = out[0]
108
                static_dout = out[2]
109 110 111
                original_np1 = static_out_value

        self.assertTrue(np.array_equal(static_sum_out, sum_out_value))
112
        self.assertTrue(np.array_equal(static_sum_out, eager_sum_out_value))
113
        self.assertTrue(np.array_equal(static_dout, dyout))
114
        self.assertTrue(np.array_equal(static_dout, eager_dyout))
115 116 117


if __name__ == '__main__':
118
    paddle.enable_static()
119
    unittest.main()