broadcast_function.h 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/kernels/funcs/elementwise_base.h"
18

19
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
20

21
namespace kps = phi::kps;
22 23 24

#endif

25
namespace phi {
26 27
namespace funcs {

28 29
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
  // To compensate the lackage of input_tensors` dimension with input variable
  // 'axis'
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
52
            PADDLE_THROW(phi::errors::InvalidArgument(
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
69
            PADDLE_THROW(phi::errors::InvalidArgument(
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
125
                               const phi::DDim &dims,
126
                               int axis) {
127
    const int N = std::max(static_cast<int>(ins.size()), 2);
128
    dim_size = dims.size();
129
    out_dims = phi::vectorize<int64_t>(dims);
130 131 132
    in_dims.resize(N);
    if (ins.size() == 1) {
      // when ins.size() = 1, broadcast input to output
133
      in_dims[0] = phi::vectorize<int64_t>(ins[0]->dims());
134 135 136 137
      in_dims[1] = out_dims;
      // Add out_dims to in_dims to avoid errors in dims merging
    } else {
      for (int j = 0; j < N; ++j) {
138
        in_dims[j] = phi::vectorize<int64_t>(ins[j]->dims());
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
      }
    }
    InputDimensionsExtend(N, axis);

    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
      }
    };
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
          equal &= in_dims[j][i] == out[i];
        }
      }
    };
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears.
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    int min_idx = 0;
    int min_val = std::accumulate(
        in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
    for (int j = 1; j < N; ++j) {
      int temp = std::accumulate(
          in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
      min_val = min_val > temp ? temp : min_val;
      min_idx = min_val == temp ? j : min_idx;
    }
    std::swap(in_dims[0], in_dims[min_idx]);

    // To Merge the dimension of input_tensors while the consequtive
    // 1-value-dimensions appears.
    merge_ptr = merge_sequential_one_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);
    std::swap(in_dims[min_idx], in_dims[0]);
  }
};

template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
    T *dst,
    const _ptr_ T *src,
    uint32_t block_offset,
    const kps::details::BroadcastConfig<Rank> &config,
    int numel,
    int num,
    int need_broadcast) {
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
    kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
        dst, src, block_offset, config, numel);
  } else {
    kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          int Rank,
          bool IsBoundary = false>
__device__ void VectorizedBroadcastKernelImpl(
216 217 218
    const phi::Array<const _ptr_ InT *__restrict__, Arity> &ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
    const phi::Array<int, Arity> &use_broadcast,
219
    uint32_t numel,
220
    const phi::Array<kps::details::BroadcastConfig<Rank>, Arity> &configs,
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    int num,
    int block_offset,
    Functor func) {
  InT args[Arity][VecSize];
  ConditionalT<OutT, NumOuts> result[VecSize];

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
                                             ins[i],
                                             block_offset,
                                             configs[i],
                                             numel,
                                             num,
                                             use_broadcast[i]);
  }
  constexpr bool kCallElementwiseAny =
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
240 241 242 243 244 245
  phi::funcs::ElementwisePrimitiveCaller<InT,
                                         ConditionalT<OutT, NumOuts>,
                                         VecSize,
                                         Functor,
                                         Arity,
                                         kCallElementwiseAny>()(
246 247
      func, args, result);

248
  phi::funcs::ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
249 250 251 252 253 254 255 256 257 258 259
      outs, result, block_offset, num);
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          int Rank>
__global__ void VectorizedBroadcastKernel(
260 261 262
    phi::Array<const _ptr_ InT *__restrict__, Arity> ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
    phi::Array<int, Arity> use_broadcast,
263
    uint32_t numel,
264
    phi::Array<kps::details::BroadcastConfig<Rank>, Arity> configs,
265 266 267 268 269 270
    int main_offset,
    int tail_tid,
    Functor func) {
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;

271
#ifdef PADDLE_WITH_XPU_KP
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  for (; block_offset < main_offset; block_offset += stride) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  false>(ins,
                                         outs,
                                         use_broadcast,
                                         numel,
                                         configs,
                                         BLOCK_NUM_X * VecSize,
                                         block_offset,
                                         func);
  }
  int num = numel - block_offset;
  if (num > 0) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  true>(
        ins, outs, use_broadcast, numel, configs, num, block_offset, func);
  }
#else
  if (block_offset < main_offset) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  false>(ins,
                                         outs,
                                         use_broadcast,
                                         numel,
                                         configs,
                                         BLOCK_NUM_X * VecSize,
                                         block_offset,
                                         func);
  } else {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  true>(
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
  }
#endif
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          int Rank>
void LaunchBroadcastKernel(const KPDevice &ctx,
                           const std::vector<const DenseTensor *> &ins,
                           std::vector<DenseTensor *> *outs,
                           Functor func,
                           DimensionsTransform merge_dims) {
  int numel = (*outs)[0]->numel();
345 346 347 348
  phi::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
  phi::Array<int, Arity> use_broadcast;
  phi::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
  phi::Array<_ptr_ OutT *, NumOuts> outs_data;
349 350

  for (int i = 0; i < NumOuts; ++i) {
351
    outs_data[i] = (_ptr_ OutT *)(ctx.Alloc<OutT>((*outs)[i]));
352 353 354 355
  }

  for (int i = 0; i < Arity; i++) {
    use_broadcast[i] = (ins[i]->numel() != numel);
356
    ins_data[i] = (const _ptr_ InT *)(ins[i]->data<InT>());
357 358 359 360 361 362 363 364 365
    if (use_broadcast[i]) {
      // get the broadcast config,
      // if data shape is[m, n], then you should set data_dim = {n, m}
      // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
      configs[i] = kps::details::BroadcastConfig<Rank>(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
  }

366
#ifdef PADDLE_WITH_XPU_KP
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  const int threads = 64;
  const int blocks = 8;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.x_context()->xpu_stream;
  VectorizedBroadcastKernel<InT,
                            OutT,
                            Functor,
                            Arity,
                            NumOuts,
                            VecSize,
                            Rank><<<blocks, threads, stream>>>(ins_data,
                                                               outs_data,
                                                               use_broadcast,
                                                               numel,
                                                               configs,
                                                               main_offset,
                                                               tail_tid,
                                                               func);
#else
  const int threads = 256;
  int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.stream();
  VectorizedBroadcastKernel<InT,
                            OutT,
                            Functor,
                            Arity,
                            NumOuts,
                            VecSize,
                            Rank><<<blocks, threads, 0, stream>>>(ins_data,
                                                                  outs_data,
                                                                  use_broadcast,
                                                                  numel,
                                                                  configs,
                                                                  main_offset,
                                                                  tail_tid,
                                                                  func);
#endif
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
void BroadcastKernelForDifferentDimSize(
    const KPDevice &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);

#define CALL_BROADCAST_FOR_DIM_SIZE(rank)                                     \
  case rank: {                                                                \
    LaunchBroadcastKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
        ctx, ins, outs, func, merge_dims);                                    \
  } break;

  switch (merge_dims.dim_size) {
    CALL_BROADCAST_FOR_DIM_SIZE(1);
    CALL_BROADCAST_FOR_DIM_SIZE(2);
    CALL_BROADCAST_FOR_DIM_SIZE(3);
    CALL_BROADCAST_FOR_DIM_SIZE(4);
    CALL_BROADCAST_FOR_DIM_SIZE(5);
    CALL_BROADCAST_FOR_DIM_SIZE(6);
    CALL_BROADCAST_FOR_DIM_SIZE(7);
    CALL_BROADCAST_FOR_DIM_SIZE(8);
    default: {
439
      PADDLE_THROW(phi::errors::InvalidArgument(
440 441 442
          "The maximum dimension of input tensor is expected to be less than "
          "%d, but recieved %d.",
          merge_dims.dim_size,
443
          phi::DDim::kMaxRank));
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    }
  }
#undef CALL_BROADCAST_FOR_DIM_SIZE
}

template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void BroadcastKernelForDifferentVecSize(
    const KPDevice &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
465
                    phi::errors::InvalidArgument(
466 467 468 469 470 471 472
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_LE(kArity,
                    3,
473
                    phi::errors::InvalidArgument(
474 475 476 477 478
                        "Currently only broadcast of ternary is supported "
                        "and verified, but received %d.",
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
479
                    phi::errors::InvalidArgument(
480 481 482 483 484 485 486 487 488 489 490
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));
  int in_vec_size = 4;
  int out_vec_size = 4;
  if (NumOuts > 1) {
    for (int i = 0; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
491
          phi::errors::InvalidArgument(
492 493 494 495
              "The shape of each output tensor shall be identical yet, but "
              "%d-th output tensor`s shape is not.",
              i));
      out_vec_size = std::min(
496
          phi::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()), out_vec_size);
497 498
    }
  } else {
499
    out_vec_size = phi::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
500 501 502
  }

  for (auto *in : ins) {
503
    auto temp_size = phi::GetVectorizedSize<InT>(in->data<InT>());
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    in_vec_size = in->dims() == (*outs)[0]->dims()
                      ? std::min(temp_size, in_vec_size)
                      : in_vec_size;
  }
  int vec_size = std::min(out_vec_size, in_vec_size);

  switch (vec_size) {
    case 4: {
      BroadcastKernelForDifferentDimSize<InT,
                                         OutT,
                                         Functor,
                                         kArity,
                                         NumOuts,
                                         4>(ctx, ins, outs, axis, func);
      break;
    }
    case 2: {
      BroadcastKernelForDifferentDimSize<InT,
                                         OutT,
                                         Functor,
                                         kArity,
                                         NumOuts,
                                         2>(ctx, ins, outs, axis, func);
      break;
    }
    case 1: {
      BroadcastKernelForDifferentDimSize<InT,
                                         OutT,
                                         Functor,
                                         kArity,
                                         NumOuts,
                                         1>(ctx, ins, outs, axis, func);
      break;
    }
    default: {
539
      PADDLE_THROW(phi::errors::Unimplemented(
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
          "Unsupported vectorized size: %d!", vec_size));
      break;
    }
  }
}

template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void BroadcastKernel(const KPDevice &ctx,
                     const std::vector<const DenseTensor *> &ins,
                     std::vector<DenseTensor *> *outs,
                     int axis,
                     Functor func) {
  std::vector<int> dims_size;
  bool no_broadcast_flag = true;
  for (auto *in : ins) {
    no_broadcast_flag &= ins[0]->dims() == in->dims();
    dims_size.emplace_back(in->dims().size());
  }

  if (ins.size() > 0 && outs->size() > 0) {
    no_broadcast_flag &= outs->at(0)->dims() == ins[0]->dims();
  }

  if (no_broadcast_flag) {
568
    phi::funcs::ElementwiseKernel<OutT, Functor, NumOuts>(ctx, ins, outs, func);
569 570 571 572 573 574 575 576 577 578
  } else {
    axis = axis == -1
               ? *std::max_element(dims_size.begin(), dims_size.end()) -
                     *std::min_element(dims_size.begin(), dims_size.end())
               : axis;
    BroadcastKernelForDifferentVecSize<ET, InT, OutT, Functor, NumOuts>(
        ctx, ins, outs, axis, func);
  }
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const GPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  std::vector<const DenseTensor *> ins = {&x, &y};
  std::vector<DenseTensor *> outs = {z};
  z->mutable_data<OutType>(dev_ctx.GetPlace());
  BroadcastKernel<ElementwiseType::kBinary, T, OutType, Functor, 1>(
      dev_ctx, ins, &outs, axis, func);
}

593 594 595
#endif

}  // namespace funcs
596
}  // namespace phi