pool_op.cc 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("global_pooling")) {
41
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
42 43
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
44
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
45
    }
46
  }
47 48 49 50 51 52 53 54 55 56 57 58

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
59
  }
60
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
61
  ctx->ShareLoD("X", "Out");
62 63
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

81 82 83 84 85 86 87
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

105
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
106 107 108
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
109
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
110 111 112
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
113
  AddOutput("Out",
K
kexinzhao 已提交
114 115 116 117 118
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
119

C
chengduoZH 已提交
120
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
121 122
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
123
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
124
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
125 126
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
127
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
128 129
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
130
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
131
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
132
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
133
                "If global_pooling = true, ksize and paddings will be ignored.")
134
      .SetDefault(false);
K
kexinzhao 已提交
135 136 137
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
138 139
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
140 141 142
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
143
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
144
      "operator."
C
chengduoZH 已提交
145
      "If global_pooling = true, paddings and ksize will be ignored.")
146 147 148 149 150 151 152 153 154 155 156 157 158
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
159 160

  AddComment(R"DOC(
K
kexinzhao 已提交
161 162
Pool2d Operator.

C
chengduoZH 已提交
163
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
164
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
165 166
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
167 168
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
169 170
The input(X) size and output(Out) size may be different.

C
chengduoZH 已提交
171
Example:   
C
chengduoZH 已提交
172
  Input:
K
kexinzhao 已提交
173
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
174
  Output:
K
kexinzhao 已提交
175
       Out shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
176
  Where
K
kexinzhao 已提交
177
       $$ 
C
chengduoZH 已提交
178 179
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
180 181
       $$

182
)DOC");
183 184
}

185
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
186
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
187 188 189 190 191 192
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
193
  AddOutput("Out",
C
chengduoZH 已提交
194
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
195 196 197 198
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
199

C
chengduoZH 已提交
200
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
201
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
202
                       "and \"avg\" for average-pooling.")
203
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
204 205 206 207
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
208
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
209 210
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
211
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
212 213 214 215
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
216
      .SetDefault(false);
K
kexinzhao 已提交
217 218 219 220
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
221 222
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
223 224
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
225
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
226
      "width) of pooling operator. "
C
chengduoZH 已提交
227
      "If global_pooling = true, ksize and paddings will be ignored.")
228 229 230
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

231 232 233 234 235 236 237 238 239 240 241 242 243
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

244
  AddComment(R"DOC(
K
kexinzhao 已提交
245 246
Pool3d Operator.

C
chengduoZH 已提交
247
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
248
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
249 250 251 252 253
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) 
are three elements. These three elements represent depth, height and 
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
254 255 256

Example:
  Input:
K
kexinzhao 已提交
257
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
258
  Output:
K
kexinzhao 已提交
259
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
260 261 262 263 264 265
  Where
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
K
kexinzhao 已提交
266

267
)DOC");
268
}
269 270 271 272 273 274 275 276
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
277 278 279 280 281 282
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
283 284 285 286

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
287 288 289 290 291 292
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);