analyzer_resnet50_tester.cc 3.3 KB
Newer Older
T
Tao Luo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

T
Tao Luo 已提交
23
void SetConfig(AnalysisConfig *cfg, bool _use_mkldnn = FLAGS_use_MKLDNN) {
T
Tao Luo 已提交
24 25 26 27 28 29
  cfg->param_file = FLAGS_infer_model + "/params";
  cfg->prog_file = FLAGS_infer_model + "/model";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->enable_ir_optim = true;
  cfg->specify_input_name = true;
T
Tao Luo 已提交
30
  cfg->_use_mkldnn = _use_mkldnn;
T
Tao Luo 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");

  PaddleTensor input;
  // channel=3, height/width=318
  std::vector<int> shape({FLAGS_batch_size, 3, 318, 318});
  input.shape = shape;
  input.dtype = PaddleDType::FLOAT32;

  // fill input data, for profile easily, do not use random data here.
  size_t size = FLAGS_batch_size * 3 * 318 * 318;
  input.data.Resize(size * sizeof(float));
  float *input_data = static_cast<float *>(input.data.data());
  for (size_t i = 0; i < size; i++) {
    *(input_data + i) = static_cast<float>(i) / size;
  }

  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}

// Easy for profiling independently.
TEST(Analyzer_resnet50, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
    size_t size = GetSize(outputs[0]);
    // output is a 512-dimension feature
    EXPECT_EQ(size, 512 * FLAGS_batch_size);
  }
}

// Check the fuse status
TEST(Analyzer_resnet50, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
T
Tao Luo 已提交
78 79 80 81 82
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
T
Tao Luo 已提交
83 84 85 86 87 88 89 90 91 92
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_resnet50, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(cfg, input_slots_all);
T
Tao Luo 已提交
93 94 95
}

// Compare result of NativeConfig and AnalysisConfig with MKLDNN
T
Tao Luo 已提交
96
#ifdef PADDLE_WITH_MKLDNN
T
Tao Luo 已提交
97 98 99 100 101 102 103
TEST(Analyzer_resnet50, compare_mkldnn) {
  AnalysisConfig cfg;
  SetConfig(&cfg, true);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(cfg, input_slots_all);
T
Tao Luo 已提交
104
}
T
Tao Luo 已提交
105
#endif
T
Tao Luo 已提交
106 107 108 109

}  // namespace analysis
}  // namespace inference
}  // namespace paddle