mean_op.cc 3.0 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
liuwei1031 已提交
15
#ifdef LITE_WITH_X86
L
liuwei1031 已提交
16
#include "paddle/fluid/framework/operator.h"
L
liuwei1031 已提交
17
#endif
L
liuwei1031 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

class MeanOp : public OpLite {
 public:
  explicit MeanOp(const std::string& type) : OpLite(type) {}

  bool CheckShape() const override {
    CHECK_OR_FALSE(param_.X);
    CHECK_OR_FALSE(param_.Out);
    return true;
  }

  bool InferShape() const override {
    param_.Out->Resize(std::vector<int64_t>{1});
    return true;
  }

  bool AttachImpl(const OpDesc& opdesc, lite::Scope* scope) override {
    auto X_name = opdesc.Input("X").front();
    auto Out_name = opdesc.Output("Out").front();

    param_.X = GetVar<lite::Tensor>(scope, X_name);
    param_.Out = GetMutableVar<Tensor>(scope, Out_name);
    return true;
  }

  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override { return "mean"; }

 private:
  mutable operators::ElementwiseParam param_;
};

L
liuwei1031 已提交
57
#ifdef LITE_WITH_X86
L
liuwei1031 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class MeanGradOp : public OpLite {
 public:
  explicit MeanGradOp(const std::string& type) : OpLite(type) {}

  bool CheckShape() const override {
    CHECK_OR_FALSE(param_.X);
    CHECK_OR_FALSE(param_.Out_grad);
    CHECK_OR_FALSE(param_.X_grad);
    return true;
  }

  bool InferShape() const override {
    param_.X_grad->Resize(param_.X->dims());
    // param_.X_grad->set_lod(param_.X->lod());
    return true;
  }

  bool AttachImpl(const OpDesc& opdesc, lite::Scope* scope) override {
    CHECK_EQ(opdesc.Inputs().size(), 3UL);
    auto X_name = opdesc.Input("X").front();
    auto Out_grad_name = opdesc.Input(framework::GradVarName("Out")).front();
    auto X_grad_name = opdesc.Output(framework::GradVarName("X")).front();

    param_.X = GetVar<lite::Tensor>(scope, X_name);
    param_.Out_grad = GetVar<lite::Tensor>(scope, Out_grad_name);
    param_.X_grad = GetMutableVar<Tensor>(scope, X_grad_name);
    return true;
  }

  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override { return "mean_grad"; }

 private:
  mutable operators::MeanGradParam param_;
};
L
liuwei1031 已提交
94
#endif
L
liuwei1031 已提交
95 96 97 98 99 100

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(mean, paddle::lite::operators::MeanOp);
L
liuwei1031 已提交
101
#ifdef LITE_WITH_X86
L
liuwei1031 已提交
102
REGISTER_LITE_OP(mean_grad, paddle::lite::operators::MeanGradOp);
L
liuwei1031 已提交
103
#endif