sequence2batch.h 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
22

D
dangqingqing 已提交
23 24 25 26
namespace paddle {
namespace operators {
namespace math {

27 28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
31
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
32 33 34 35 36 37 38
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
Q
QI JUN 已提交
39
  void operator()(const DeviceContext& context, const framework::Tensor& src,
40
                  framework::Vector<size_t> index_lod, framework::Tensor* dst,
Q
QI JUN 已提交
41
                  bool is_src_index);
D
dangqingqing 已提交
42 43
};

Q
QI JUN 已提交
44
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
45
class LoDTensor2BatchFunctor {
Y
Yu Yang 已提交
46 47 48 49 50 51 52
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
53
    SeqInfo(size_t start, size_t length, size_t seq_idx)
Y
Yu Yang 已提交
54
        : start(start), length(length), seq_idx(seq_idx) {}
55 56 57
    size_t start;
    size_t length;
    size_t seq_idx;
Y
Yu Yang 已提交
58 59
  };

D
dangqingqing 已提交
60
 public:
Q
QI JUN 已提交
61
  void operator()(const DeviceContext& context,
D
dangqingqing 已提交
62
                  const framework::LoDTensor& lod_tensor,
63
                  framework::LoDTensor* batch, bool is_cal_batch_lod,
D
dangqingqing 已提交
64 65
                  bool is_reverse = false) const {
    if (!is_cal_batch_lod) {
66
      auto lods = batch->lod();
67 68 69 70 71 72
      PADDLE_ENFORCE_GT(lods.size(), 2UL,
                        "The LoD of LoDTensor should inlcude at least 2-level "
                        "sequence information.");
      PADDLE_ENFORCE_EQ(
          lods[1].size(), static_cast<size_t>(lod_tensor.dims()[0]),
          "The LoD information should be consistent with the dims.");
Q
QI JUN 已提交
73
      CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
D
dzhwinter 已提交
74
      to_batch(context, lod_tensor, lods[1], batch, true);
D
dangqingqing 已提交
75 76 77
      return;
    }

78
    auto lods = lod_tensor.lod();
79
    PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
D
dangqingqing 已提交
80

81
    const auto& lod = lods[0];
82

D
dangqingqing 已提交
83
    std::vector<SeqInfo> seq_info;
84
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
85
      size_t length = lod[seq_id + 1] - lod[seq_id];
D
dangqingqing 已提交
86 87 88 89 90 91
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

92
    // Calculate the start position of each batch.
D
dangqingqing 已提交
93 94
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
T
tensor-tang 已提交
95
    //           max_seqlen = 5,
D
dangqingqing 已提交
96 97 98
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
Y
Yu Yang 已提交
99 100 101 102
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
D
dangqingqing 已提交
103 104 105 106 107
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
108 109 110 111
    //           seq_order = {1, 0, 2}, the sort order.
    //               where 1 is the second sequence,
    //                     0 is the first sequence,
    //                     2 is the third sequence.
T
tensor-tang 已提交
112
    // The max_seqlen represents batch size after rearranging the
D
dangqingqing 已提交
113
    // input LodTensor. It is also the maximum length of input sequence.
114 115

    paddle::framework::LoD batch_lods;
Y
Yu Yang 已提交
116 117
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});
118
    batch_lods.emplace_back(std::vector<size_t>{0});
119

D
dangqingqing 已提交
120
    // batch_lods[0] is the start positions for batch LoDTensor
121 122
    size_t max_seqlen = seq_info[0].length;
    batch_lods[0].resize(max_seqlen + 1);
D
dangqingqing 已提交
123
    // batch_lods[1] is the raw index in the input LoDTensor
D
dangqingqing 已提交
124
    batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
125 126
    // batch_lods[2] is the sort order for the input LoDTensor.
    batch_lods[2].resize(seq_info.size());
D
dangqingqing 已提交
127

128 129
    size_t* batch_starts = batch_lods[0].data();
    size_t* seq2batch_idx = batch_lods[1].data();
D
dangqingqing 已提交
130
    batch_starts[0] = 0;
131 132
    for (size_t n = 0; n < max_seqlen; n++) {
      size_t batch_id = batch_starts[n];
D
dangqingqing 已提交
133
      for (size_t i = 0; i < seq_info.size(); ++i) {
134 135
        size_t seq_len = seq_info[i].length;
        size_t start = seq_info[i].start;
D
dangqingqing 已提交
136
        if (n < seq_len) {
D
dangqingqing 已提交
137 138
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
D
dangqingqing 已提交
139 140 141 142 143
          batch_id++;
        } else {
          break;
        }
      }
144
      batch_starts[n + 1] = batch_id;
D
dangqingqing 已提交
145
    }
146 147 148 149
    size_t* seq_order = batch_lods[2].data();
    for (size_t i = 0; i < seq_info.size(); ++i) {
      seq_order[i] = seq_info[i].seq_idx;
    }
150
    batch->set_lod(batch_lods);
D
dangqingqing 已提交
151

Q
QI JUN 已提交
152
    CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
D
dzhwinter 已提交
153
    to_batch(context, lod_tensor, batch_lods[1], batch, true);
D
dangqingqing 已提交
154
  }
D
dangqingqing 已提交
155
};
D
dangqingqing 已提交
156

Q
QI JUN 已提交
157
template <typename DeviceContext, typename T>
158
class Batch2LoDTensorFunctor {
D
dangqingqing 已提交
159
 public:
Q
QI JUN 已提交
160
  void operator()(const DeviceContext& context,
D
dangqingqing 已提交
161
                  const framework::LoDTensor& batch,
162
                  framework::LoDTensor* lod_tensor) const {
163
    auto in_lod = batch.lod();
164 165 166 167 168 169
    PADDLE_ENFORCE_GT(in_lod.size(), 2UL,
                      "The LoD of LoDTensor should inlcude at least 2-level "
                      "sequence information.");
    PADDLE_ENFORCE_EQ(
        in_lod[1].size(), static_cast<size_t>(lod_tensor->dims()[0]),
        "The LoD information should be consistent with the dims.");
Q
QI JUN 已提交
170
    CopyMatrixRowsFunctor<DeviceContext, T> to_seq;
D
dzhwinter 已提交
171
    to_seq(context, batch, in_lod[1], lod_tensor, false);
172
  }
D
dangqingqing 已提交
173
};
D
dangqingqing 已提交
174 175 176 177

}  // namespace math
}  // namespace operators
}  // namespace paddle