im2col.cc 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
H
hedaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/im2col.h"
16
#include <vector>
H
hedaoyuan 已提交
17 18

namespace paddle {
19
namespace operators {
20
namespace math {
H
hedaoyuan 已提交
21 22

/*
H
hedaoyuan 已提交
23 24 25
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
26 27
 */
template <class T>
H
hedaoyuan 已提交
28
class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
29
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
30
 public:
Q
QI JUN 已提交
31
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
32 33 34
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* col) {
H
hedaoyuan 已提交
35
    PADDLE_ENFORCE(im.dims().size() == 3);
C
chengduoZH 已提交
36
    PADDLE_ENFORCE(col->dims().size() == 5);
H
hedaoyuan 已提交
37

C
chengduoZH 已提交
38 39 40
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
C
chengduoZH 已提交
41 42
    int filter_height = col->dims()[1];
    int filter_width = col->dims()[2];
T
tensor-tang 已提交
43 44
    int output_height = col->dims()[3];
    int output_width = col->dims()[4];
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46
    int channels_col = im_channels * filter_height * filter_width;
H
hedaoyuan 已提交
47 48

    const T* im_data = im.data<T>();
C
chengduoZH 已提交
49
    T* col_data = col->data<T>();
T
tensor-tang 已提交
50 51 52 53 54 55 56
    // TODO(TJ): change me to template
    // further optimaze:
    // 1. padding != 1
    // 2. could also support stride_h != 1
    if (stride[0] == 1 && stride[1] == 1 && dilation[0] == 1 &&
        dilation[1] == 1 && padding[0] == 0 && padding[1] == 0) {
      int col_matrix_width = output_width * output_height;
T
tensor-tang 已提交
57
      size_t copy_size = sizeof(T) * output_width;
T
tensor-tang 已提交
58 59 60 61 62 63 64
      for (int oh = 0; oh < output_height; ++oh) {
        const T* im_data_start = im_data + oh * im_width;
        T* dst_data = col_data + oh * output_width;
        for (int ic = 0; ic < im_channels; ++ic) {
          const T* src_data = im_data_start + ic * im_height * im_width;
          for (int kh = 0; kh < filter_height; ++kh) {
            for (int kw = 0; kw < filter_width; ++kw) {
T
tensor-tang 已提交
65
              std::memcpy(dst_data, src_data + kw, copy_size);
T
tensor-tang 已提交
66 67 68 69 70 71 72 73 74
              dst_data = dst_data + col_matrix_width;
            }
            src_data = src_data + im_width;
          }
        }
      }
      return;
    }

H
hedaoyuan 已提交
75
    for (int c = 0; c < channels_col; ++c) {
C
chengduoZH 已提交
76 77 78
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
T
tensor-tang 已提交
79
      for (int h = 0; h < output_height; ++h) {
C
chengduoZH 已提交
80
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
T
tensor-tang 已提交
81
        for (int w = 0; w < output_width; ++w) {
C
chengduoZH 已提交
82
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
T
tensor-tang 已提交
83
          int col_idx = (c * output_height + h) * output_width + w;
C
chengduoZH 已提交
84
          int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
C
chengduoZH 已提交
85

C
chengduoZH 已提交
86 87 88 89
          col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                               im_col_idx < 0 || im_col_idx >= im_width)
                                  ? static_cast<T>(0)
                                  : im_data[im_idx];
H
hedaoyuan 已提交
90 91 92 93 94 95 96
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
97 98 99
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
100 101
 */
template <class T>
H
hedaoyuan 已提交
102
class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
103
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
104
 public:
Q
QI JUN 已提交
105
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
106 107 108 109 110
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* im) {
    PADDLE_ENFORCE(im->dims().size() == 3);
H
hedaoyuan 已提交
111
    PADDLE_ENFORCE(col.dims().size() == 5);
C
chengduoZH 已提交
112 113 114
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
H
hedaoyuan 已提交
115 116
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
C
chengduoZH 已提交
117 118
    int col_height = col.dims()[3];
    int col_width = col.dims()[4];
C
chengduoZH 已提交
119

C
chengduoZH 已提交
120 121 122
    PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
                       ((dilation[0] * (filter_height - 1) + 1))) /
                              stride[0] +
C
chengduoZH 已提交
123 124 125 126
                          1,
                      col_height,
                      "Output_height and padding(padding_up, padding_down) are "
                      "inconsistent.");
C
chengduoZH 已提交
127 128 129
    PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
                       ((dilation[1] * (filter_width - 1) + 1))) /
                              stride[1] +
C
chengduoZH 已提交
130 131
                          1,
                      col_width,
C
chengduoZH 已提交
132
                      "Output_height and padding(padding_up, padding_down) are "
C
chengduoZH 已提交
133
                      "inconsistent.");
C
chengduoZH 已提交
134

C
chengduoZH 已提交
135
    int channels_col = im_channels * filter_height * filter_width;
H
hedaoyuan 已提交
136

C
chengduoZH 已提交
137
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
138 139 140
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
C
chengduoZH 已提交
141 142 143
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
C
chengduoZH 已提交
144
      for (int h = 0; h < col_height; ++h) {
C
chengduoZH 已提交
145
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
C
chengduoZH 已提交
146
        for (int w = 0; w < col_width; ++w) {
C
chengduoZH 已提交
147
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
C
chengduoZH 已提交
148 149
          if ((im_row_idx) >= 0 && (im_row_idx) < im_height &&
              (im_col_idx) >= 0 && (im_col_idx) < im_width) {
C
chengduoZH 已提交
150
            im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] +=
C
chengduoZH 已提交
151
                col_data[(c * col_height + h) * col_width + w];
H
hedaoyuan 已提交
152 153 154 155 156 157 158
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
159
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
160
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
161
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
162
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
163
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
164
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
165
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
166
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
167 168

/*
H
hedaoyuan 已提交
169 170 171
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
172 173
 */
template <class T>
H
hedaoyuan 已提交
174
class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
175
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
176
 public:
Q
QI JUN 已提交
177
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
178 179 180
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* col) {
H
hedaoyuan 已提交
181
    PADDLE_ENFORCE(im.dims().size() == 3);
C
chengduoZH 已提交
182
    PADDLE_ENFORCE(col->dims().size() == 5);
C
chengduoZH 已提交
183 184 185
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
C
chengduoZH 已提交
186 187 188 189
    int filter_height = col->dims()[3];
    int filter_width = col->dims()[4];
    int col_height = col->dims()[0];
    int col_width = col->dims()[1];
H
hedaoyuan 已提交
190 191

    const T* im_data = im.data<T>();
C
chengduoZH 已提交
192
    T* col_data = col->data<T>();
H
hedaoyuan 已提交
193

C
chengduoZH 已提交
194 195 196
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
197 198
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
199 200
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
201 202 203
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
204
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
205

C
chengduoZH 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
              int col_offset =
                  ((((col_row_idx)*col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;

              int im_offset = (channel * im_height + im_row_offset) * im_width +
                              im_col_offset;
              col_data[col_offset] =
                  (im_row_offset < 0 || im_row_offset >= im_height ||
                   im_col_offset < 0 || im_col_offset >= im_width)
                      ? static_cast<T>(0)
                      : im_data[im_offset];
H
hedaoyuan 已提交
221 222 223 224 225 226 227 228 229
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
230 231 232
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
233 234
 */
template <class T>
H
hedaoyuan 已提交
235
class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
236
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
237
 public:
Q
QI JUN 已提交
238
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
239 240 241 242 243
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* im) {
    PADDLE_ENFORCE(im->dims().size() == 3);
H
hedaoyuan 已提交
244
    PADDLE_ENFORCE(col.dims().size() == 5);
C
chengduoZH 已提交
245 246 247
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
H
hedaoyuan 已提交
248 249
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
C
chengduoZH 已提交
250 251
    int col_height = col.dims()[0];
    int col_width = col.dims()[1];
H
hedaoyuan 已提交
252

C
chengduoZH 已提交
253 254 255 256 257 258 259 260 261 262
    PADDLE_ENFORCE_EQ(
        (im_height + padding[0] + padding[2] - filter_height) / stride[0] + 1,
        col_height,
        "Output_height and padding(padding_up, padding_down) are "
        "inconsistent.");
    PADDLE_ENFORCE_EQ(
        (im_width + padding[1] + padding[3] - filter_width) / stride[1] + 1,
        col_width,
        "col_width and padding(padding_left, padding_right) are "
        "inconsistent.");
263

C
chengduoZH 已提交
264
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
265 266
    const T* col_data = col.data<T>();

C
chengduoZH 已提交
267 268 269
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
270 271
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
272 273
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
274 275 276
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
277
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
278

C
chengduoZH 已提交
279 280 281 282 283 284 285
              int col_offset =
                  (((col_row_idx * col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
C
refine  
chengduoZH 已提交
286

C
chengduoZH 已提交
287 288
              if (im_row_offset >= 0 && im_row_offset < im_height &&
                  im_col_offset >= 0 && im_col_offset < im_width) {
H
hedaoyuan 已提交
289
                int im_offset =
C
chengduoZH 已提交
290
                    (channel * im_height + im_row_offset) * im_width +
H
hedaoyuan 已提交
291 292
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
293 294 295 296 297 298 299 300 301
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
302
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
303
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
304
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
305
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
306
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
307
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
308
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
309
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
310

311
}  // namespace math
312
}  // namespace operators
H
hedaoyuan 已提交
313
}  // namespace paddle