mnist.py 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import time
import numpy as np

import tensorflow as tf

DTYPE = tf.float32


def parse_args():
    parser = argparse.ArgumentParser("mnist model benchmark.")
    parser.add_argument(
        '--batch_size', type=int, default=128, help='The minibatch size.')
    parser.add_argument(
        '--iterations', type=int, default=35, help='The number of minibatches.')
    parser.add_argument(
        '--pass_num', type=int, default=5, help='The number of passes.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    args = parser.parse_args()
    return args


def run_benchmark(args):
    def weight_variable(dtype, shape):
        initial = tf.truncated_normal(shape, stddev=0.1, dtype=dtype)
        return tf.Variable(initial)

    def bias_variable(dtype, shape):
        initial = tf.constant(0.1, shape=shape, dtype=dtype)
        return tf.Variable(initial)

    device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0'
    with tf.device(device):
        images = tf.placeholder(DTYPE, shape=(None, 28, 28, 1))
        labels = tf.placeholder(tf.int64, shape=(None, ))

        # conv1, relu, pool1
        conv1_weights = weight_variable(DTYPE, [5, 5, 1, 20])
        conv1_bias = bias_variable(DTYPE, [20])
        conv1 = tf.nn.conv2d(
            images, conv1_weights, strides=[1, 1, 1, 1], padding="VALID")
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
        pool1 = tf.nn.max_pool(
            relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")

        # conv2, relu, pool2
        conv2_weights = weight_variable(DTYPE, [5, 5, 20, 50])
        conv2_bias = bias_variable(DTYPE, [50])
        conv2 = tf.nn.conv2d(
            pool1, conv2_weights, strides=[1, 1, 1, 1], padding="VALID")
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
        pool2 = tf.nn.max_pool(
            relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")

        # FC 
        pool_shape = pool2.get_shape().as_list()
        hidden_dim = reduce(lambda a, b: a * b, pool_shape[1:], 1)
        reshape = tf.reshape(pool2, shape=(tf.shape(pool2)[0], hidden_dim))
        fc_weights = weight_variable(DTYPE, [hidden_dim, 10])
        fc_bias = bias_variable(DTYPE, [10])
        logits = tf.matmul(reshape, fc_weights) + fc_bias

        # Get prediction
        prediction = tf.nn.softmax(logits)

        # Loss 
        one_hot_labels = tf.one_hot(labels, depth=10)
        cost = -tf.reduce_sum(tf.log(prediction) * one_hot_labels, [1])
        avg_cost = tf.reduce_mean(cost)

        # Get accuracy
        correct = tf.equal(tf.argmax(prediction, 1), labels)
        accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

        # metrics, g_accuracy
        with tf.variable_scope("reset_metrics_accuracy_scope") as scope:
            g_accuracy = tf.metrics.accuracy(
                labels, tf.argmax(
                    prediction, axis=1))
            vars = tf.contrib.framework.get_variables(
                scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
            g_accuracy_reset_op = tf.variables_initializer(vars)

        # Optimizer 
        opt = tf.train.AdamOptimizer(
            learning_rate=0.001, beta1=0.9, beta2=0.999)
        train_op = opt.minimize(avg_cost)
        # train_op = tf.train.AdamOptimizer(1e-4).minimize(avg_cost)

    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=args.batch_size)
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=args.batch_size)

    def eval_test():
        sess.run(g_accuracy_reset_op)
        for batch_id, data in enumerate(test_reader()):
            images_data = np.array(
                map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
            labels_data = np.array(map(lambda x: x[1], data)).astype("int64")

            loss, acc, g_acc = sess.run(
                [avg_cost, accuracy, g_accuracy],
                feed_dict={images: images_data,
                           labels: labels_data})
        return g_acc[1]

    config = tf.ConfigProto(
        intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        init_g = tf.global_variables_initializer()
        init_l = tf.local_variables_initializer()
        sess.run(init_g)
        sess.run(init_l)
        for pass_id in range(args.pass_num):
            sess.run(g_accuracy_reset_op)

            pass_start = time.time()
            for batch_id, data in enumerate(train_reader()):
                images_data = np.array(
                    map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
                labels_data = np.array(map(lambda x: x[1], data)).astype(
                    "int64")

                start = time.time()
                _, loss, acc, g_acc = sess.run(
                    [train_op, avg_cost, accuracy, g_accuracy],
                    feed_dict={images: images_data,
                               labels: labels_data})
                end = time.time()

                print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" %
                      (pass_id, batch_id, loss, 1 - acc, (end - start) / 1000))

            pass_end = time.time()
            test_avg_acc = eval_test()

            print(
                "pass=%d, training_avg_accuracy=%f, test_avg_acc=%f, elapse=%f"
                % (pass_id, g_acc[1], test_avg_acc,
                   (pass_end - pass_start) / 1000))


def print_arguments(args):
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    run_benchmark(args)