prim_op_test.cc 21.0 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"

USE_OP_ITSELF(reshape_p);
USE_OP_ITSELF(broadcast_p);
USE_OP_ITSELF(reduce_p);
USE_OP_ITSELF(transpose_p);
USE_OP_ITSELF(split_p);
USE_OP_ITSELF(concat_p);
USE_OP_ITSELF(slice_select_p);
USE_OP_ITSELF(slice_assign_p);
USE_OP_ITSELF(gather_p);
USE_OP_ITSELF(scatter_add_p);
USE_OP_ITSELF(add_p);
USE_OP_ITSELF(sub_p);
USE_OP_ITSELF(mul_p);
USE_OP_ITSELF(div_p);
USE_OP_ITSELF(sqrt_p);
USE_OP_ITSELF(tanh_p);
USE_OP_ITSELF(matmul_p);
USE_OP_ITSELF(fill_constant_p);
37
USE_OP_ITSELF(log_p);
38 39 40
USE_OP_ITSELF(select_p);
USE_OP_ITSELF(eq_p);
USE_OP_ITSELF(pow_p);
L
levi131 已提交
41 42 43 44

namespace paddle {
namespace framework {

45 46
static void NewVar(BlockDesc *block,
                   const std::string &name,
L
levi131 已提交
47 48 49 50 51 52 53 54 55
                   const std::vector<int64_t> &shape) {
  auto *var_desc = block->Var(name);
  if (shape.size() > 0) {
    var_desc->SetShape(shape);
    var_desc->SetType(proto::VarType::LOD_TENSOR);
    var_desc->SetDataType(proto::VarType_Type_FP32);
  }
}

56 57 58 59
static void AppendOp(BlockDesc *block,
                     const std::string &type,
                     VariableNameMap inputs,
                     VariableNameMap outputs,
L
levi131 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
                     AttributeMap attrs) {
  auto &op_info = OpInfoMap::Instance().Get(type);
  if (op_info.Checker()) {
    op_info.Checker()->Check(&attrs);
  }

  auto *op = block->AppendOp();
  op->SetType(type);
  for (auto &pair : inputs) {
    op->SetInput(pair.first, pair.second);
  }

  for (auto &pair : outputs) {
    op->SetOutput(pair.first, pair.second);
    for (auto &var_name : pair.second) {
      if (!block->FindVarRecursive(var_name)) {
        NewVar(block, var_name, {});
      }
    }
  }

  op->SetAttrMap(attrs);
  op->InferVarType(block);
  op->InferShape(*block);
}

TEST(PrimOp, reshape_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
95 96 97 98
  AppendOp(block,
           "reshape_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
           {{"shape", std::vector<int64_t>{12, 5}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 2UL);
  ASSERT_EQ(shapes[0], 12L);
  ASSERT_EQ(shapes[1], 5L);
}

TEST(PrimOp, broadcast_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 1};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
117 118 119 120
  AppendOp(block,
           "broadcast_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
           {{"shape", std::vector<int64_t>{3, 4, 5}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, reduce_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
141 142 143 144
  AppendOp(block,
           "reduce_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
145 146 147 148 149 150
           {{"axis", std::vector<int64_t>{0, 2}}, {"keepdim", false}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 1UL);
  ASSERT_EQ(shapes[0], 4L);
151 152 153 154
  AppendOp(block,
           "reduce_p",
           {{"X", {x0}}},
           {{"Y", {x2}}},
L
levi131 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
           {{"axis", std::vector<int64_t>{0, 2}}, {"keepdim", true}});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 1L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 1L);
}

TEST(PrimOp, transpose_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
174 175 176 177
  AppendOp(block,
           "transpose_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
           {{"axis", std::vector<int64_t>{2, 1, 0}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 5L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 3L);
}

TEST(PrimOp, split_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{6, 8, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";
  std::string x3 = "x3";

  NewVar(block, x0, shape);
199 200 201 202
  AppendOp(block,
           "split_p",
           {{"X", {x0}}},
           {{"YS", {x1, x2, x3}}},
L
levi131 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
           {{"axis", int64_t{1}},
            {"num_or_sections", std::vector<int64_t>{2, 4, 2}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 2L);
  ASSERT_EQ(shapes[2], 10L);
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 10L);
  ASSERT_EQ(block->Var("x3")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x3")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x3")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 2L);
  ASSERT_EQ(shapes[2], 10L);
  std::string x4 = "x4";
  std::string x5 = "x5";
  AppendOp(
229 230 231 232
      block,
      "split_p",
      {{"X", {x0}}},
      {{"YS", {x4, x5}}},
L
levi131 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      {{"axis", int64_t{2}}, {"num_or_sections", std::vector<int64_t>{2}}});
  ASSERT_EQ(block->Var("x4")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x4")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x4")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 5L);
  ASSERT_EQ(block->Var("x5")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x5")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x5")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, concat_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{3, 1, 5};
  std::vector<int64_t> shape_1{3, 4, 5};
  std::vector<int64_t> shape_2{3, 6, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";
  std::string x3 = "x3";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
  NewVar(block, x2, shape_2);
265 266 267 268
  AppendOp(block,
           "concat_p",
           {{"XS", {x0, x1, x2}}},
           {{"Y", {x3}}},
L
levi131 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
           {{"axis", int64_t{1}}});
  ASSERT_EQ(block->Var("x3")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x3")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x3")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 11L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, slice_select_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{6, 8, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
288 289 290 291
  AppendOp(block,
           "slice_select_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
           {{"axis", std::vector<int64_t>{0, 1, 2}},
            {"starts", std::vector<int64_t>{0, 0, 0}},
            {"ends", std::vector<int64_t>{5, 7, 9}},
            {"strides", std::vector<int64_t>{2, 2, 2}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, slice_assign_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{6, 8, 10};
  std::vector<int64_t> shape_1{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
317 318 319 320
  AppendOp(block,
           "slice_assign_p",
           {{"X", {x0}}, {"Y", {x1}}},
           {{"Z", {x2}}},
L
levi131 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
           {{"axis", std::vector<int64_t>{0, 1, 2}},
            {"starts", std::vector<int64_t>{0, 0, 0}},
            {"ends", std::vector<int64_t>{5, 7, 9}},
            {"strides", std::vector<int64_t>{2, 2, 2}}});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 10L);
}

TEST(PrimOp, gather_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{6, 8, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
343 344 345 346
  AppendOp(block,
           "gather_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
           {{"axis", int64_t{1}}, {"index", std::vector<int64_t>{0, 2, 5}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 3L);
  ASSERT_EQ(shapes[2], 10L);
  std::string index_t = "index_t";
  std::string x2 = "x2";

  auto *var_desc = block->Var(index_t);
  var_desc->SetShape(std::vector<int64_t>{3});
  var_desc->SetType(proto::VarType::LOD_TENSOR);
  var_desc->SetDataType(proto::VarType_Type_INT32);
362 363 364 365 366
  AppendOp(block,
           "gather_p",
           {{"X", {x0}}, {"IndexTensor", {index_t}}},
           {{"Y", {x2}}},
           {{"axis", int64_t{1}}});
L
levi131 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 3L);
  ASSERT_EQ(shapes[2], 10L);
}

TEST(PrimOp, scatter_add_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{6, 8, 10};
  std::vector<int64_t> shape_1{6, 3, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
388 389 390 391
  AppendOp(block,
           "scatter_add_p",
           {{"X", {x0}}, {"Y", {x1}}},
           {{"Z", {x2}}},
L
levi131 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
           {{"axis", int64_t{1}}, {"index", std::vector<int64_t>{0, 2, 5}}});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 10L);
  std::string index_t = "index_t";
  std::string x3 = "x3";

  auto *var_desc = block->Var(index_t);
  var_desc->SetShape(std::vector<int64_t>{3});
  var_desc->SetType(proto::VarType::LOD_TENSOR);
  var_desc->SetDataType(proto::VarType_Type_INT32);
407 408
  AppendOp(block,
           "scatter_add_p",
L
levi131 已提交
409
           {{"X", {x0}}, {"Y", {x1}}, {"IndexTensor", {index_t}}},
410 411
           {{"Z", {x3}}},
           {{"axis", int64_t{1}}});
L
levi131 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  ASSERT_EQ(block->Var("x3")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x3")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x3")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 10L);
}

TEST(PrimOp, add_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "add_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, sub_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "sub_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, mul_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "mul_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, div_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "div_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, sqrt_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
  AppendOp(block, "sqrt_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, tanh_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
  AppendOp(block, "tanh_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, matmul_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{3, 4, 5};
  std::vector<int64_t> shape_1{3, 5, 8};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
  AppendOp(block, "matmul_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 8L);
  std::vector<int64_t> shape_2{4, 5};
  std::vector<int64_t> shape_3{5, 8};

  std::string x3 = "x3";
  std::string x4 = "x4";
  std::string x5 = "x5";

  NewVar(block, x3, shape_2);
  NewVar(block, x4, shape_3);
  AppendOp(block, "matmul_p", {{"X", {x3}}, {"Y", {x4}}}, {{"Z", {x5}}}, {});
  ASSERT_EQ(block->Var("x5")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x5")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x5")->GetShape();
  ASSERT_EQ(shapes.size(), 2UL);
  ASSERT_EQ(shapes[0], 4L);
  ASSERT_EQ(shapes[1], 8L);
}

TEST(PrimOp, fill_constant_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::string x0 = "x0";

586 587 588 589
  AppendOp(block,
           "fill_constant_p",
           {{}},
           {{"Y", {x0}}},
L
levi131 已提交
590 591 592 593 594 595 596 597 598 599 600 601
           {{"value", 0.0f},
            {"dtype", proto::VarType_Type_FP32},
            {"shape", std::vector<int64_t>{3, 4, 5}}});
  ASSERT_EQ(block->Var("x0")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x0")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x0")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
TEST(PrimOp, log_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
  AppendOp(block, "log_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
TEST(PrimOp, select_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{2, 3};

  std::string cond = "cond";
  std::string x = "x";
  std::string y = "y";
  std::string z = "z";

  NewVar(block, cond, shape);
  NewVar(block, x, shape);
  NewVar(block, y, shape);

  AppendOp(block,
           "select_p",
           {{"Condition", {cond}}, {"X", {x}}, {"Y", {y}}},
           {{"Z", {z}}},
           {});
  ASSERT_EQ(block->Var("z")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("z")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("z")->GetShape();
  ASSERT_EQ(shapes.size(), 2UL);
  ASSERT_EQ(shapes[0], 2L);
  ASSERT_EQ(shapes[1], 3L);
}

TEST(PrimOp, eq_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x = "x";
  std::string y = "y";
  std::string z = "z";

  NewVar(block, x, shape);
  NewVar(block, y, shape);
  AppendOp(block, "eq_p", {{"X", {x}}, {"Y", {y}}}, {{"Z", {z}}}, {});
  ASSERT_EQ(block->Var("z")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("z")->GetDataType(), proto::VarType::BOOL);
  auto shapes = block->Var("z")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, pow_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x = "x";
  std::string y = "y";
  std::string z = "z";

  NewVar(block, x, shape);
  NewVar(block, y, shape);
  AppendOp(block, "pow_p", {{"X", {x}}, {"Y", {y}}}, {{"Z", {z}}}, {});
  ASSERT_EQ(block->Var("z")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("z")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("z")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

L
levi131 已提交
690 691
}  // namespace framework
}  // namespace paddle