concat_and_split.cc 11.4 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15
#include "paddle/fluid/operators/math/concat_and_split.h"
16

L
Leo Chen 已提交
17
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
18
#ifdef PADDLE_WITH_ASCEND_CL
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20
#endif
Z
zn 已提交
21 22 23
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#endif
24 25
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
W
wanghuancoder 已提交
26

27
namespace phi {
28
class DenseTensor;
29
}  // namespace phi
30

W
wanghuancoder 已提交
31
namespace paddle {
32
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
33 34 35 36
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle
C
chengduoZH 已提交
37 38 39 40 41 42

namespace paddle {
namespace operators {
namespace math {

/*
C
chengduoZH 已提交
43
 * All tensors' dimension should be the same and the values of
44
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
45 46 47 48 49
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
50
                  const std::vector<framework::Tensor>& input, int axis,
C
chengduoZH 已提交
51
                  framework::Tensor* output) {
L
Leo Chen 已提交
52 53
    phi::funcs::ConcatFunctor<phi::CPUContext, T> functor;
    functor(context, input, axis, output);
C
chengduoZH 已提交
54 55 56
  }
};

C
chengduoZH 已提交
57 58
/*
 * All tensors' dimension should be the same and the values of
59
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
60
 */
C
chengduoZH 已提交
61
template <typename T>
C
chengduo 已提交
62
class SplitFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
63 64
 public:
  void operator()(const platform::CPUDeviceContext& context,
Q
qiaolongfei 已提交
65
                  const framework::Tensor& input,
C
chengduoZH 已提交
66
                  const std::vector<const framework::Tensor*>& ref_inputs,
Q
qiaolongfei 已提交
67
                  const int axis, std::vector<framework::Tensor*>* outputs) {
L
Leo Chen 已提交
68 69
    phi::funcs::SplitFunctor<phi::CPUContext, T> functor;
    functor(context, input, ref_inputs, axis, outputs);
C
chengduoZH 已提交
70 71
  }
};
72 73 74 75 76 77 78 79 80 81 82 83

#ifdef PADDLE_WITH_XPU
/*
 * All tensors' dimension should be the same and the values of
 * each dimension must be the same, except the axis dimension.
 */
template <typename T>
class ConcatFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
84
    int dev_id = context.GetPlace().GetDeviceId();
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    platform::XPUDeviceGuard guard(dev_id);

    int num = input.size();
    auto input_dims = input[0].dims();

    std::vector<std::vector<int>> xdims_list(num);
    for (int i = 0; i < num; ++i) {
      std::vector<int> tmp_dims(input_dims.size());
      for (int j = 0; j < input_dims.size(); ++j) {
        tmp_dims[j] = input[i].dims()[j];
      }
      xdims_list[i] = tmp_dims;
    }

    std::vector<const T*> ptrs;
    for (int i = 0; i < num; ++i) {
      ptrs.push_back(input[i].data<T>());
    }

    auto r = xpu::concat<T>(context.x_context(), ptrs, output->data<T>(),
                            xdims_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};

template <typename T>
class SplitFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
122
    int dev_id = context.GetPlace().GetDeviceId();
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    platform::XPUDeviceGuard guard(dev_id);

    auto& ins = ref_inputs;

    int num = ins.size();
    auto input_dims = ins[0]->dims();
    std::vector<int> split_list(num);
    std::vector<int> xdims_list(input_dims.size());
    int total_length = 0;
    for (int i = 0; i < num; ++i) {
      split_list[i] = ins[i]->dims()[axis];
      total_length += ins[i]->dims()[axis];
    }

    for (int i = 0; i < input_dims.size(); ++i) {
      if (i == axis) continue;
      xdims_list[i] = input_dims[i];
    }
    xdims_list[axis] = total_length;

    std::vector<T*> ptrs(num);
    for (int i = 0; i < num; ++i) {
      ptrs[i] = outputs->at(i)->data<T>();
    }

    auto r = xpu::split<T>(context.x_context(), input.data<T>(), ptrs,
                           xdims_list, split_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};
#endif

160 161 162 163 164 165 166
#ifdef PADDLE_WITH_ASCEND_CL
template <typename T>
class ConcatFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
167
    int dev_id = context.GetPlace().GetDeviceId();
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    platform::NPUDeviceGuard guard(dev_id);

    std::vector<std::string> names;
    for (size_t i = 0; i < input.size(); ++i) {
      names.push_back("x" + std::to_string(i));
    }
    NpuOpRunner runner{
        "ConcatD",
        {input},
        {*output},
        {{"concat_dim", axis}, {"N", static_cast<int>(input.size())}}};
    runner.AddInputNames(names);
    runner.Run(context.stream());
  }
};

template <typename T>
class SplitFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
    if (input.numel() == 0) {
      return;
    }

    size_t num = outputs->size();

    int input_rows = 1;
    auto dim_0 = ref_inputs[0]->dims();
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }

    int input_cols = 0;

    std::vector<int64_t> output_cols(outputs->size());
    for (size_t i = 0; i < num; ++i) {
      int t_cols = ref_inputs[i]->numel() / input_rows;
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
211
    auto npu_place = context.GetPlace();
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    // computation
    for (int k = 0; k < input_rows; ++k) {
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
      for (size_t j = 0; j < num; ++j) {
        int col_len = output_cols[j];
        auto* out_tensor = outputs->at(j);
        if (out_tensor != nullptr) {
          T* dst_ptr = out_tensor->data<T>() + k * col_len;
          memory::Copy(npu_place, dst_ptr, npu_place, src_ptr + col_idx,
                       sizeof(T) * col_len, context.stream());
        }
        col_idx += col_len;
      }
    }
  }
};
#endif

Z
zn 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
#ifdef PADDLE_WITH_MLU
template <typename T>
class ConcatFunctor<platform::MLUDeviceContext, T> {
 public:
  void operator()(const platform::MLUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
    int dev_id = context.GetPlace().GetDeviceId();
    platform::MLUDeviceGuard guard(dev_id);

    auto ins_size = input.size();

    const int axis_t = axis;
    const int ins_size_t = ins_size;
    auto place = context.GetPlace();
    output->mutable_data<T>(place);

    // mlu should do sth
    // init ins tensors
    std::vector<const void*> inputs;
    std::vector<MLUCnnlTensorDesc> input_descs;
    std::vector<cnnlTensorDescriptor_t> desc_vector;
    for (size_t i = 0; i < ins_size; i++) {
      input_descs.emplace_back(MLUCnnlTensorDesc(
          input[i], CNNL_LAYOUT_ARRAY, ToCnnlDataType(input[i].dtype())));
      desc_vector.push_back(input_descs.back().get());
      inputs.push_back(input[i].data());
    }
    // init out tensors
    MLUCnnlTensorDesc output_desc(*output, CNNL_LAYOUT_ARRAY,
                                  ToCnnlDataType(output->dtype()));

    // MLU should do sth
    MLUCnnl::Concat(context, ins_size_t, axis_t, desc_vector.data(),
                    inputs.data(), output_desc.get(), GetBasePtr(output));
  }
};

template <typename T>
class SplitFunctor<platform::MLUDeviceContext, T> {
 public:
  void operator()(const platform::MLUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
    if (input.numel() == 0) {
      return;
    }

    int dev_id = context.GetPlace().GetDeviceId();
    platform::MLUDeviceGuard guard(dev_id);

    auto in_dims = input.dims();
    auto out_size = outputs->size();

    std::vector<framework::DDim> outs_dims(out_size, in_dims);
    for (size_t i = 0; i < out_size; ++i) {
      outs_dims[i][axis] = ref_inputs[i]->dims()[axis];
    }

    // init out tensors
    std::vector<void*> vct_tensor;
    std::vector<MLUCnnlTensorDesc> output_descs;
    std::vector<cnnlTensorDescriptor_t> desc_vector;
    for (size_t i = 0; i < out_size; i++) {
      (*outputs)[i]->Resize(outs_dims[i]);
      (*outputs)[i]->mutable_data<T>(context.GetPlace());
      output_descs.emplace_back(
          MLUCnnlTensorDesc(*(*outputs)[i], CNNL_LAYOUT_ARRAY,
                            ToCnnlDataType((*outputs)[i]->dtype())));
      desc_vector.push_back(output_descs.back().get());
      vct_tensor.push_back(GetBasePtr((*outputs)[i]));
    }
    // init in tensors
    MLUCnnlTensorDesc input_desc(input, CNNL_LAYOUT_ARRAY,
                                 ToCnnlDataType(input.dtype()));

    // MLU should do sth
    MLUCnnl::Split(context, out_size, axis, input_desc.get(), input.data(),
                   desc_vector.data(), vct_tensor.data());
  }
};
#endif

C
chengduoZH 已提交
316 317
#define DEFINE_FUNCTOR(type)                                      \
  template class ConcatFunctor<platform::CPUDeviceContext, type>; \
C
chengduo 已提交
318
  template class SplitFunctor<platform::CPUDeviceContext, type>;
C
chengduoZH 已提交
319

C
chengduoZH 已提交
320
FOR_ALL_TYPES(DEFINE_FUNCTOR);
C
chengduoZH 已提交
321

322 323 324 325 326 327 328 329
#ifdef PADDLE_WITH_XPU
#define DEFINE_XPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::XPUDeviceContext, type>; \
  template class SplitFunctor<platform::XPUDeviceContext, type>;

DEFINE_XPU_FUNCTOR(float)
#endif

330 331 332 333 334 335 336 337
#ifdef PADDLE_WITH_ASCEND_CL
#define DEFINE_NPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::NPUDeviceContext, type>; \
  template class SplitFunctor<platform::NPUDeviceContext, type>;

FOR_ALL_TYPES(DEFINE_NPU_FUNCTOR)
#endif

Z
zn 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
#ifdef PADDLE_WITH_MLU
#define DEFINE_MLU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::MLUDeviceContext, type>; \
  template class SplitFunctor<platform::MLUDeviceContext, type>;
DEFINE_MLU_FUNCTOR(float)
DEFINE_MLU_FUNCTOR(platform::float16)
DEFINE_MLU_FUNCTOR(int64_t)
DEFINE_MLU_FUNCTOR(bool)
DEFINE_MLU_FUNCTOR(int)
DEFINE_MLU_FUNCTOR(int8_t)
DEFINE_MLU_FUNCTOR(int16_t)
DEFINE_MLU_FUNCTOR(uint8_t)
#endif
C
chengduoZH 已提交
351 352 353
}  // namespace math
}  // namespace operators
}  // namespace paddle