layers.py 1.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
X
Xin Pan 已提交
16 17 18
import sys
import numpy as np

X
Xin Pan 已提交
19
from paddle.fluid import core
X
Xin Pan 已提交
20
from paddle.fluid import framework
X
polish  
Xin Pan 已提交
21
from paddle.fluid.imperative import base
X
Xin Pan 已提交
22 23 24 25 26 27

__all__ = ['PyLayer']


class PyLayer(core.Layer):
    def __init__(self):
X
polish  
Xin Pan 已提交
28
        pass
X
Xin Pan 已提交
29 30

    def __call__(self, inputs):
X
polish  
Xin Pan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        # TODO(panyx0718): Support declarative mode as well.
        assert base.enabled()
        if not isinstance(inputs, list) and not isinstance(inputs, tuple):
            inputs = [inputs]

        var_inputs = []
        for x in inputs:
            if isinstance(x, np.ndarray):
                py_var = base.to_variable(x)
                var_inputs.append(py_var)
            elif isinstance(x, framework.Variable):
                var_inputs.append(x)
            else:
                raise ValueError("not var or ndarray %s" % type(x))
        outputs = self.forward(var_inputs)
        return outputs
X
Xin Pan 已提交
47

X
Xin Pan 已提交
48 49
    def forward(self, inputs):
        return []