uniform_random_kernel.cu 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/uniform_random_kernel.h"

#include "gflags/gflags.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"

DECLARE_bool(use_curand);

namespace phi {

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;
  T diag_val_;
  unsigned int diag_num_;
  unsigned int diag_step_;
  __host__ __device__ UniformGenerator(
      T min, T max, int seed, int diag_num, int diag_step, T diag_val)
      : min_(min),
        max_(max),
        seed_(seed),
        diag_num_(diag_num),
        diag_step_(diag_step),
        diag_val_(diag_val) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
    T out = dist(rng);
    unsigned int remainder = n % (diag_step_ + 1);
    if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
      out = diag_val_;
    }
    return out;
  }
};

template <typename T>
struct UniformGeneratorOffset {
  T min_, max_;
  unsigned int seed_;
  T diag_val_;
  unsigned int diag_num_;
  unsigned int diag_step_;
  int offset_;
  __host__ __device__ UniformGeneratorOffset(T min,
                                             T max,
                                             int seed,
                                             int diag_num,
                                             int diag_step,
                                             T diag_val,
                                             int offset)
      : min_(min),
        max_(max),
        seed_(seed),
        diag_num_(diag_num),
        diag_step_(diag_step),
        diag_val_(diag_val),
        offset_(offset) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n + offset_);
    T out = dist(rng);
    unsigned int remainder = n % (diag_step_ + 1);
    if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
      out = diag_val_;
    }
    return out;
  }
};

template <typename T, typename Context>
void UniformRandomRawKernel(const Context& dev_ctx,
                            const ScalarArray& shape,
                            DataType dtype,
                            float min,
                            float max,
                            int seed,
                            int diag_num,
                            int diag_step,
                            float diag_val,
                            DenseTensor* out) {
  out->Resize(phi::make_ddim(shape.GetData()));
  T* data = dev_ctx.template Alloc<T>(out);
  auto size = out->numel();
  bool seed_flag = false;
  if (seed == 0) {
    std::random_device rd;
    seed = rd();
    seed_flag = true;
  }

  auto generator = dev_ctx.GetGenerator();
  if (generator->GetIsInitPy() && seed_flag) {
    if (FLAGS_use_curand) {
      using MT = typename kps::details::MPTypeTrait<T>::Type;
      distribution::uniform_distribution<MT> dist;
      distribution::uniform_transform<MT> trans(min, max);
      distribution::distribution_and_transform<T>(dev_ctx, out, dist, trans);
    } else {
      auto seed_offset = generator->IncrementOffset(1);
      int64_t gen_offset = size * seed_offset.second;
      auto func = UniformGeneratorOffset<T>(min,
                                            max,
                                            seed_offset.first,
                                            diag_num,
                                            diag_step,
                                            diag_val,
                                            gen_offset);
      IndexKernel<T, UniformGeneratorOffset<T>>(dev_ctx, out, func);
    }
  } else {
    auto func =
        UniformGenerator<T>(min, max, seed, diag_num, diag_step, diag_val);
    IndexKernel<T, UniformGenerator<T>>(dev_ctx, out, func);
  }
}

template <typename T, typename Context>
void UniformRandomKernel(const Context& dev_ctx,
                         const ScalarArray& shape,
                         DataType dtype,
                         float min,
                         float max,
                         int seed,
                         DenseTensor* out) {
  UniformRandomRawKernel<T>(
      dev_ctx, shape, dtype, min, max, seed, 0, 0, 0.0f, out);
}

}  // namespace phi

PD_REGISTER_KERNEL(uniform_random_raw,
                   GPU,
                   ALL_LAYOUT,
                   phi::UniformRandomRawKernel,
                   float,
                   double) {}

PD_REGISTER_KERNEL(
    uniform_random, GPU, ALL_LAYOUT, phi::UniformRandomKernel, float, double) {}