operator.cc 27.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/framework/operator.h"
15
#include <algorithm>
16 17 18 19 20
#include <sstream>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
23
#include "paddle/fluid/framework/lod_tensor.h"
24
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
27
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
C
chengduoZH 已提交
30 31 32
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
33

Q
Qiao Longfei 已提交
34 35 36
namespace paddle {
namespace framework {

37 38 39 40 41 42
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
43

Q
qiaolongfei 已提交
44 45 46 47 48 49 50 51 52 53 54
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

55 56
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
57
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
58 59
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
60 61
  }

M
minqiyang 已提交
62 63
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
64
    if (UNLIKELY(!tensor.IsInitialized())) {
65
      return DDim({-1});
66
    }
M
minqiyang 已提交
67 68 69 70 71 72 73
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
74 75 76 77 78
  } else {
    return DDim({-1});
  }
}

D
dzhwinter 已提交
79 80 81 82 83
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
84

M
minqiyang 已提交
85 86 87
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
88 89
      return "";
    }
M
minqiyang 已提交
90 91 92 93
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
    return DataTypeToString(
        ToDataType(var->Get<SelectedRows>().value().type()));
D
dzhwinter 已提交
94 95 96 97 98
  } else {
    return "";
  }
}

99 100 101 102 103 104
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
105 106
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
107 108 109 110 111
  }

  return -1;
}

Q
Qiao Longfei 已提交
112 113 114 115 116 117 118 119
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
120 121 122
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return default_lod;
    }
M
minqiyang 已提交
125
    return tensor.lod();
Q
Qiao Longfei 已提交
126 127 128 129 130
  } else {
    return default_lod;
  }
}

131
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
132 133 134 135 136
  try {
    if (VLOG_IS_ON(4)) {
      VLOG(4) << place << " " << DebugStringEx(&scope);
    }
    if (platform::is_gpu_place(place)) {
137
#ifndef PADDLE_WITH_CUDA
138
      PADDLE_THROW("Cannot run operator on place %s", place);
139
#else
140 141
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
142
#endif
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    }
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
    if (VLOG_IS_ON(3)) {
      VLOG(3) << place << " " << DebugStringEx(&scope);
    }
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
      throw exception;
    }

    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
      throw exception;
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
    throw exception;
  } catch (...) {
    std::rethrow_exception(std::current_exception());
173 174 175
  }
}

176 177 178 179 180 181 182 183
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

184
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
185
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
186
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
187 188
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
189
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
190 191
}

Y
Yu Yang 已提交
192 193
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
194
  auto it = inputs_.find(name);
195 196
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
197
  return it->second;
Y
Yan Chunwei 已提交
198 199
}

200
bool OperatorBase::HasOutputs(const std::string& name) const {
201
  if (outputs_.end() != outputs_.find(name)) {
202 203 204 205 206 207
    return true;
  } else {
    return false;
  }
}

208
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
209
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
210
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
211 212
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
213
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
214 215
}

Y
Yu Yang 已提交
216 217
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
218
  auto it = outputs_.find(name);
219 220
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
221
  return it->second;
Y
Yan Chunwei 已提交
222 223
}

224
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
225
  std::stringstream ss;
Y
Yu Yang 已提交
226
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
227 228
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
229 230 231
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
232
      if (scope) {
233 234 235 236
        int row_size = GetRowSize(*scope, input.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
D
dzhwinter 已提交
237 238
        std::string dtype = GetDtype(*scope, input.second[i]);
        ss << ":" << dtype;
239
        ss << "[" << GetDims(*scope, input.second[i], true) << "]";
Q
Qiao Longfei 已提交
240
        ss << "(" << GetLoD(*scope, input.second[i]) << ")";
241
      }
Y
Yu Yang 已提交
242 243 244
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
245
    }
Y
Yu Yang 已提交
246
    ss << "]";
Y
Yu Yang 已提交
247 248
    ++it;
    if (it != inputs_.end()) {
249 250
      ss << ", ";
    }
Q
Qiao Longfei 已提交
251
  }
Y
Yu Yang 已提交
252
  ss << "}, outputs:{";
Y
Yu Yang 已提交
253 254
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
255 256 257
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
258
      if (scope) {
259 260 261 262
        int row_size = GetRowSize(*scope, output.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
263
        ss << "[" << GetDims(*scope, output.second[i], true) << "]";
Q
Qiao Longfei 已提交
264
        ss << "(" << GetLoD(*scope, output.second[i]) << ")";
265
      }
Y
Yu Yang 已提交
266 267 268
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
269
    }
Y
Yu Yang 已提交
270
    ss << "]";
Y
Yu Yang 已提交
271 272
    ++it;
    if (it != outputs_.end()) {
273 274
      ss << ", ";
    }
Q
Qiao Longfei 已提交
275
  }
Y
Yu Yang 已提交
276
  ss << "}.";
Q
Qiao Longfei 已提交
277 278 279
  return ss.str();
}

Y
Yu Yang 已提交
280
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
281 282
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
283 284
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
285 286
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
287
}
288

Q
qijun 已提交
289 290
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
291
  for (auto& o : inputs_) {
Q
qijun 已提交
292 293 294 295 296 297
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
298 299 300 301 302 303 304 305 306 307
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
308
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
309 310

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
311
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
321 322
}

323 324 325
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
326
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
327 328

  for (auto& in : op_info->Proto().inputs()) {
329 330 331 332
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
333 334 335
  }

  for (auto& out : op_info->Proto().outputs()) {
336 337 338 339 340
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

357 358 359 360
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

361
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
362
  if (var->IsType<LoDTensor>()) {
363
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
364
  } else if (var->IsType<SelectedRows>()) {
365
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
366
  } else {
Y
Yang Yang 已提交
367 368
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
369 370 371 372 373
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
374
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
375
  } else if (var->IsType<SelectedRows>()) {
376
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
377
  } else {
Y
Yang Yang 已提交
378 379
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
380 381 382
  }
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

415
template <>
416
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
417
  auto* var = InputVar(name);
418 419
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
420 421 422
}

template <>
423
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
424 425 426 427
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
428 429 430 431 432
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
433 434 435 436
  return res;
}

template <>
437
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
438
  auto var = OutputVar(name);
Q
QI JUN 已提交
439
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
440 441 442
}

template <>
443
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
444 445 446 447
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
448 449
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
450 451
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
452
                                         : GetMutableTensorFromVar(var);
453
                 });
454 455 456
  return res;
}

Y
Yu Yang 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

472 473 474 475 476 477
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
478 479 480
    if (!op_.HasInputs(name)) {
      return false;
    }
481 482 483 484 485
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
486 487
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Input %s should not have more than one inputs", name);
488 489 490 491 492 493
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
494 495 496
    if (!op_.HasOutputs(name)) {
      return false;
    }
497 498 499 500 501
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
502 503
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Output %s should not have more than one inputs", name);
504 505 506 507 508 509
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
510 511 512
    if (!op_.HasInputs(name)) {
      return false;
    }
513 514 515 516 517 518 519 520 521 522 523 524 525
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
526 527 528
    if (!op_.HasOutputs(name)) {
      return false;
    }
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
553 554 555 556 557 558 559 560 561 562 563 564
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
565

M
mozga-intel 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
599 600
  }

601 602 603
  bool IsRuntime() const override { return true; }

 protected:
604 605
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
606
    PADDLE_ENFORCE_NOT_NULL(var);
607 608 609 610 611
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
612 613 614 615 616 617 618
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
619
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
620
    PADDLE_THROW("Only compile time support this method");
621 622 623 624 625 626 627 628 629
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
630 631
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
632 633 634
    }
  }

F
fengjiayi 已提交
635 636
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
637
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
638 639
  }

640
  proto::VarType::Type GetVarType(const std::string& name) const override {
641 642 643 644
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
645 646 647 648
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

649
 private:
650 651 652 653
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
654 655 656 657 658
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
659
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
660 661 662 663 664 665 666 667
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

668 669
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
670 671
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
672
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
673
  auto* dev_ctx = pool.Get(place);
674

675 676 677 678
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
679 680
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
681 682
  }

Q
qiaolongfei 已提交
683 684
  OpKernelMap& kernels = kernels_iter->second;

685 686
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
687

688 689 690 691
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
692 693
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
694 695
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

696
  auto kernel_iter = kernels.find(expected_kernel_key);
697
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
698
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
699 700
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
701
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
702 703 704 705 706
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
707 708 709 710 711
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
712 713 714 715
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
716

Y
yuyang18 已提交
717 718 719 720 721 722
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
723
  }
Q
QI JUN 已提交
724

Y
yuyang18 已提交
725
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
726

Y
yuyang18 已提交
727 728 729
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
730 731
  }

D
dzhwinter 已提交
732
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
733
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
734
    dev_ctx->Wait();
D
dzhwinter 已提交
735
  }
C
chengduoZH 已提交
736 737 738

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
739
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
740 741 742
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
743 744
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
745 746 747
      }
    }
  }
Q
Qiao Longfei 已提交
748
}
Y
yuyang18 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
800
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
801 802 803 804 805 806
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
807

808
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
809 810 811
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
812
  std::string last_input_name;
Y
Yu Yang 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
827 828
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
829 830
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
831
          data_type = tmp;
832
          last_input_name = ipt_name;
Y
Yu Yang 已提交
833 834 835 836 837
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
838
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
839
}
840

841 842 843 844 845 846 847 848
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
849 850
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
851 852
}

Q
Qiao Longfei 已提交
853
}  // namespace framework
L
liaogang 已提交
854
}  // namespace paddle