elementwise_add_op.cu 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#define EIGEN_USE_GPU
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/elementwise_add_op.h"
K
Kexin Zhao 已提交
17
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
18

S
sneaxiy 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
namespace paddle {
namespace operators {

template <typename T>
__global__ void ElementwiseAddCUDAKernel(const T *x, const T *y, T *z, int n,
                                         int post, int size) {
  int idx_x = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx_x < size) {
    int idx_y = idx_x / post - (idx_x / (n * post)) * n;
    z[idx_x] = x[idx_x] + y[idx_y];
  }
}

template <typename T>
class ElementwiseAddKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    const auto x = ctx.Input<Tensor>("X");
    const auto y = ctx.Input<Tensor>("Y");
    auto z = ctx.Output<Tensor>("Out");
    auto *z_data = z->mutable_data<T>(ctx.GetPlace());

    auto &device = *(ctx.cuda_device_context().eigen_device());
    const framework::DDim &x_dim = x->dims();
    framework::DDim y_dim = y->dims();
    int size = x->numel();
    if (x_dim == y_dim) {
      auto dim = framework::make_ddim({size});
      auto z_eigen = framework::EigenTensor<T, 1>::From(*z, dim);
      auto x_eigen = framework::EigenTensor<T, 1>::From(*x, dim);
      auto y_eigen = framework::EigenTensor<T, 1>::From(*y, dim);
      z_eigen.device(device) = x_eigen + y_eigen;
    } else {
      int axis = ctx.Attr<int>("axis");
      axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis);
      y_dim = trim_trailing_singular_dims(y_dim);
      axis = (y_dim.size() == 0) ? x_dim.size() : axis;
      int pre, n, post;
      get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
      int threads = 512;
      int grids = (size + threads - 1) / threads;
      auto stream = ctx.cuda_device_context().stream();
      ElementwiseAddCUDAKernel<T><<<grids, threads, 0, stream>>>(
          x->data<T>(), y->data<T>(), z_data, n, post, size);
    }
  }
};

}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
73
namespace ops = paddle::operators;
K
Kexin Zhao 已提交
74
namespace plat = paddle::platform;
G
gongweibao 已提交
75

Q
QI JUN 已提交
76
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
77 78 79
    elementwise_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
K
Kexin Zhao 已提交
80 81
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
82
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
83
    elementwise_add_grad,
K
Kexin Zhao 已提交
84 85 86 87
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int64_t>);