communicator.cc 33.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/distributed/communicator.h"
Q
Qiao Longfei 已提交
16
#include <gflags/gflags.h>
17
#include <paddle/fluid/framework/program_desc.h>
Q
Qiao Longfei 已提交
18
#include <chrono>  // NOLINT
19
#include <map>
Q
Qiao Longfei 已提交
20
#include <thread>  // NOLINT
21
#include <unordered_set>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/eigen.h"
Q
Qiao Longfei 已提交
23 24
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
25
#include "paddle/fluid/framework/threadpool.h"
Q
Qiao Longfei 已提交
26 27 28 29
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"

30 31 32
DECLARE_int32(communicator_max_merge_var_num);
DECLARE_int32(communicator_send_queue_size);

Q
Qiao Longfei 已提交
33 34
DEFINE_bool(communicator_independent_recv_thread, true,
            "use an independent to recv vars from parameter server");
35
DEFINE_int32(communicator_min_send_grad_num_before_recv, 20,
36
             "max grad num to send before recv parameters");
37
DEFINE_int32(communicator_thread_pool_size, 5, "thread num to do send or recv");
Q
Qiao Longfei 已提交
38 39 40
DEFINE_int32(communicator_send_wait_times, 5,
             "times that send thread will wait if merge num does not reach "
             "max_merge_var_num");
41 42
DEFINE_bool(communicator_fake_rpc, false,
            "fake mode does not really send any thing");
43 44
DEFINE_bool(communicator_merge_sparse_grad, true,
            "merge sparse gradient before sending");
45 46
DEFINE_int32(communicator_merge_sparse_bucket, 2000,
             "number of threads for sparse var");
Q
Qiao Longfei 已提交
47

Q
Qiao Longfei 已提交
48 49 50 51
namespace paddle {
namespace operators {
namespace distributed {

Q
Qiao Longfei 已提交
52 53 54 55 56 57
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
template <typename T>
inline void VSUB(int n, const T *x, const T *y, T *z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
}

inline std::vector<int> bucket(const int v_size, const int b_size) {
  int remainder = v_size % b_size;
  int bucket = v_size / b_size;
  std::vector<int> ret_vec(b_size, bucket);
  for (int i = 0; i < remainder; ++i) {
    ret_vec[i] = ret_vec[i] + 1;
  }
  int cur_bucket = 0;
  for (int j = 0; j < ret_vec.size(); ++j) {
    int tmp = ret_vec[j];
    ret_vec[j] = cur_bucket;
    cur_bucket += tmp;
  }
  ret_vec.push_back(cur_bucket);
  return ret_vec;
}

T
tangwei12 已提交
82
std::once_flag Communicator::init_flag_;
83
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);
Q
can run  
Qiao Longfei 已提交
84

T
tangwei12 已提交
85 86 87 88 89 90 91
void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RpcCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

Q
Qiao Longfei 已提交
92 93 94 95 96
  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
97 98
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
Q
Qiao Longfei 已提交
99 100
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
101 102
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
Q
Qiao Longfei 已提交
103
  VLOG(0) << "communicator_max_merge_var_num: "
104 105
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
106 107
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

  if (send_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be send, will not start send_thread";
  } else {
    send_scope_.reset(new Scope());
    for (auto &iter : send_varname_to_ctx_) {
      send_varname_to_queue_[iter.first] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              FLAGS_communicator_send_queue_size);
    }
    send_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  }

  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
    recv_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
Q
Qiao Longfei 已提交
127 128 129
  }
}

T
tangwei12 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
void AsyncCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                 Scope *param_scope) {
  using RpcCtxMap = operators::distributed::RpcCtxMap;
  VLOG(3) << "ProcessGraph";
  RpcCtxMap send_varname_to_ctx;
  RpcCtxMap recv_varname_to_ctx;
  for (auto *op : program.Block(0).AllOps()) {
    VLOG(3) << "node name " << op->Type();
    if (op->Type() == "send") {
      auto send_var_name = op->Input("X")[0];
      auto send_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("send_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto height_section =
          boost::get<std::vector<int64_t>>(op->GetNullableAttr("sections"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      send_varname_to_ctx[send_var_name] = operators::distributed::RpcContext(
          send_var_name, send_varnames, epmap, height_section, trainer_id);
      VLOG(3) << "find and init an send op: "
              << send_varname_to_ctx[send_var_name];
    } else if (op->Type() == "recv") {
      auto do_not_run = boost::get<int>(op->GetNullableAttr("do_not_run"));
      PADDLE_ENFORCE_GT(do_not_run, 0, "recv should not run!");
      auto recv_var_name = op->Output("Out")[0];
      auto recv_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("recv_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      recv_varname_to_ctx[recv_var_name] = operators::distributed::RpcContext(
          recv_var_name, recv_varnames, epmap, {}, trainer_id);
    }
  }

  // init communicator here
  if (send_varname_to_ctx.size() == 0 && recv_varname_to_ctx.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  operators::distributed::AsyncCommunicator::InitImpl(
      send_varname_to_ctx, recv_varname_to_ctx, param_scope);
}

AsyncCommunicator::~AsyncCommunicator() {
175 176 177 178
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
179 180 181
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (recv_thread_) recv_thread_->join();
182 183 184 185
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
186 187
}

T
tangwei12 已提交
188
void AsyncCommunicator::SendThread() {
Q
Qiao Longfei 已提交
189
  VLOG(3) << "SendThread start!";
Q
Qiao Longfei 已提交
190 191 192
  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
Q
Qiao Longfei 已提交
193
    VLOG(3) << "run send graph";
Q
Qiao Longfei 已提交
194
    auto before_run_send_graph = GetCurrentUS();
Q
Qiao Longfei 已提交
195
    for (auto &iter : send_varname_to_queue_) {
Q
Qiao Longfei 已提交
196 197
      auto &var_name = iter.first;
      auto &var_queue = iter.second;
Q
Qiao Longfei 已提交
198
      if (var_queue->Size() > 0) {
Q
Qiao Longfei 已提交
199
        auto send_task = [this, &var_name, &var_queue] {
Q
Qiao Longfei 已提交
200
          VLOG(3) << var_name << " merge and send";
Q
Qiao Longfei 已提交
201 202
          std::vector<std::shared_ptr<Variable>> vars;
          size_t merged_var_num = 0;
Q
Qiao Longfei 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
          size_t wait_times = 0;
          while (merged_var_num < FLAGS_communicator_max_merge_var_num) {
            if (var_queue->Size() == 0) {
              VLOG(3) << "wait_times -> " << wait_times;
              if (wait_times >= FLAGS_communicator_send_wait_times) {
                break;
              }
              std::this_thread::sleep_for(std::chrono::milliseconds(10));
              wait_times++;
              continue;
            } else {
              wait_times = 0;

              vars.push_back(var_queue->Pop());
              // only count the send number of the first var
              if (var_name == send_varname_to_queue_.begin()->first) {
                grad_num_.fetch_add(1, std::memory_order_relaxed);
              }
              merged_var_num++;
222
            }
Q
Qiao Longfei 已提交
223
          }
Q
Qiao Longfei 已提交
224
          auto before_merge = GetCurrentUS();
Q
Qiao Longfei 已提交
225
          MergeVars(var_name, vars, send_scope_.get());
Q
Qiao Longfei 已提交
226
          auto after_merge = GetCurrentUS();
Q
Qiao Longfei 已提交
227 228
          VLOG(3) << "merge " << merged_var_num << " " << var_name
                  << " use time " << after_merge - before_merge;
Q
Qiao Longfei 已提交
229 230
          auto send_functor = distributed::ParameterSend<float>();
          auto &ctx = send_varname_to_ctx_.at(var_name);
231
          if (!FLAGS_communicator_fake_rpc) {
232
            send_functor(ctx, *send_scope_, true, 1);
233
          }
Q
Qiao Longfei 已提交
234 235 236
          auto after_send = GetCurrentUS();
          VLOG(3) << "send " << var_name << " use time "
                  << after_send - after_merge;
Q
Qiao Longfei 已提交
237 238 239
        };
        task_futures.emplace_back(
            send_threadpool_->enqueue(std::move(send_task)));
Q
Qiao Longfei 已提交
240
      } else {
241
        VLOG(4) << var_name << " queue empty";
Q
Qiao Longfei 已提交
242
      }
Q
Qiao Longfei 已提交
243 244 245
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
Q
Qiao Longfei 已提交
246
    }
Q
Qiao Longfei 已提交
247
    auto after_run_send_graph = GetCurrentUS();
248 249 250

    VLOG(3) << "run send graph use time "
            << after_run_send_graph - before_run_send_graph;
T
tangwei12 已提交
251
    Recv();
Q
Qiao Longfei 已提交
252
  }
253
  VLOG(0) << "communicator stopped, send thread exit";
Q
Qiao Longfei 已提交
254 255
}

T
tangwei12 已提交
256
void AsyncCommunicator::RecvThread() {
Q
Qiao Longfei 已提交
257
  VLOG(3) << "RecvThread start!";
Q
Qiao Longfei 已提交
258
  while (running_) {
259
    auto grad_num = grad_num_.load();
260
    if (grad_num > FLAGS_communicator_min_send_grad_num_before_recv) {
261 262 263 264 265 266
      VLOG(1) << "current grad num " << grad_num;
      RecvAll();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
Q
Qiao Longfei 已提交
267
  }
268
  VLOG(0) << "communicator stopped, recv thread exit";
Q
Qiao Longfei 已提交
269 270
}

T
tangwei12 已提交
271 272
void AsyncCommunicator::Send(const std::string &var_name,
                             const framework::Scope &scope) {
Q
Qiao Longfei 已提交
273 274 275 276
  VLOG(3) << "communicator send " << var_name;
  // push var into send queue by var_name
  auto *grad_var = scope.FindVar(var_name);
  PADDLE_ENFORCE(grad_var->IsInitialized(), "grad var should be inited");
277 278 279 280 281
  if (grad_var->IsType<framework::SelectedRows>() &&
      !FLAGS_communicator_merge_sparse_grad) {
    auto send_functor = distributed::ParameterSend<float>();
    auto &ctx = send_varname_to_ctx_.at(var_name);
    if (!FLAGS_communicator_fake_rpc) {
282
      send_functor(ctx, scope, true, 1);
283 284 285 286 287 288 289 290
    }
  } else {
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*grad_var, tmp_grad_var.get());
    auto &queue = send_varname_to_queue_.at(var_name);
    VLOG(3) << "send " << var_name << " queue size " << queue->Size();
    queue->Push(tmp_grad_var);
  }
Q
Qiao Longfei 已提交
291 292
}

T
tangwei12 已提交
293 294 295
void AsyncCommunicator::Recv() {
  if (FLAGS_communicator_independent_recv_thread) {
    return;
296 297
  }

T
tangwei12 已提交
298 299 300 301 302 303
  auto grad_num = grad_num_.load();
  if (grad_num > 0) {
    RecvAll();
    grad_num_.store(0);
  } else {
    std::this_thread::sleep_for(std::chrono::milliseconds(10));
304 305 306
  }
}

T
tangwei12 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
void AsyncCommunicator::RecvAll() {
  VLOG(3) << "parallel run recv graph";
  if (!running_) return;
  auto before_send = GetCurrentUS();
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
      auto &var_name = iter.first;
      VLOG(4) << "recv var " << var_name;
      auto recv_functor = distributed::ParameterRecv<float>();
      if (!FLAGS_communicator_fake_rpc) {
        recv_functor(iter.second, *recv_scope_);
      }
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
  for (auto &task : task_futures) {
    task.wait();
  }
  auto after_recv = GetCurrentUS();
  VLOG(1) << "run recv graph use time " << after_recv - before_send;
329 330
}

T
tangwei12 已提交
331
void AsyncCommunicator::Start() {
332 333 334 335 336 337 338 339
  VLOG(0) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
T
tangwei12 已提交
340
        new std::thread(std::bind(&AsyncCommunicator::SendThread, this)));
341 342
    if (FLAGS_communicator_independent_recv_thread) {
      recv_thread_.reset(
T
tangwei12 已提交
343
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
344 345 346 347
    }
  }
}

T
tangwei12 已提交
348
void AsyncCommunicator::Stop() {
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  VLOG(0) << "Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
Q
Qiao Longfei 已提交
364
  }
365
  VLOG(0) << "Communicator stop done";
Q
Qiao Longfei 已提交
366 367
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
void AsyncCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                             const std::vector<std::string> &sparse_var_tables,
                             const framework::Scope &scope) {}

void AsyncCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *param_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {}

GeoSgdCommunicator::~GeoSgdCommunicator() {
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
}

void GeoSgdCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *training_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {
  training_scope_ = std::move(training_scope);
  trainer_nums_ = std::move(trainers);
  geo_need_push_nums_ = std::move(geo_need_push_nums);

  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
  VLOG(0) << "communicator_max_merge_var_num: "
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
  VLOG(0) << "Trainer nums: " << trainer_nums_;
  VLOG(0) << "geo_sgd_push_before_local_train_nums: " << geo_need_push_nums_;
  VLOG(0) << "communicator_merge_sparse_bucket "
          << FLAGS_communicator_merge_sparse_bucket;

  // process var info from transpiler
  for (auto &iter : vars_info) {
    // change var name in delta scope: "var" -> "var.delta"
    std::string var_name = iter.first;
    std::string send_var_name = VarToDeltaVar(var_name);
    std::vector<std::string> vars_names = iter.second["var_names"];
    std::vector<std::string> send_var_names;
    for (auto origin_var_name : vars_names) {
      send_var_names.push_back(VarToDeltaVar(origin_var_name));
    }

    // get vars section for split
    std::vector<std::string> vars_sections_str = iter.second["sections"];
    std::vector<int64_t> vars_sections_int = {};
    for (std::string str : vars_sections_str) {
      int64_t str2i = std::stol(str.c_str());
      vars_sections_int.push_back(str2i);
    }

    std::vector<std::string> vars_epmap = iter.second["epmap"];

    // record var is sparse or not
    bool is_sparse = iter.second["is_sparse"].front() == std::string("True");
    var_list_[var_name] = is_sparse;

    send_varname_to_ctx_[send_var_name] = operators::distributed::RpcContext(
        send_var_name, send_var_names, vars_epmap, vars_sections_int, 0);
    recv_varname_to_ctx_[var_name] = operators::distributed::RpcContext(
        var_name, vars_names, vars_epmap, vars_sections_int, 0);
  }

  if (send_varname_to_ctx_.size() == 0 && recv_varname_to_ctx_.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  send_threadpool_.reset(new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  recv_threadpool_.reset(new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  need_push_queue_ =
      std::make_shared<BlockingQueue<std::shared_ptr<SparseIdsMap>>>(
          geo_need_push_nums);
  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());

  // for coverage test, please ignore follow code
  InitImpl(send_varname_to_ctx_, recv_varname_to_ctx_, training_scope_);
  InitImpl(program, training_scope_);
}

void GeoSgdCommunicator::Start() {
  VLOG(0) << "Geo Sgd Communicator start";
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    VLOG(0) << "start send thread ";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
        new std::thread(std::bind(&GeoSgdCommunicator::SendThread, this)));
  }
}

void GeoSgdCommunicator::Stop() {
  VLOG(0) << "Geo Sgd Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
  }
  VLOG(0) << "Geo Sgd Communicator stop done";
}

void GeoSgdCommunicator::Send(const std::string &var_name,
                              const framework::Scope &scope) {
  // when execute trainer startup program, recv parameter from pserver
  // training_scope & pserver_scope param will copy it
  if (var_name == "param_init") {
    for (auto &iter : var_list_) {
      // For sparse param, old_scope store LoDTensor,
      // pserver_scope store SelectedRows.
      auto local_var_name = iter.first;
      if (var_list_[local_var_name] == true) {
        GeoSgdSparseParamInit(training_scope_, pserver_scope_.get(),
                              local_var_name);
      } else {
        GeoSgdDenseParamInit(training_scope_, pserver_scope_.get(),
                             local_var_name);
      }
      GeoSgdDenseParamInit(training_scope_, old_scope_.get(), local_var_name);
    }
  }
}

void GeoSgdCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                              const std::vector<std::string> &sparse_var_tables,
                              const framework::Scope &scope) {
  // SparseIdsMap = std::unordered_map<std::string,std::unordered_set<int64_t>>
  std::shared_ptr<SparseIdsMap> ids_table = std::make_shared<SparseIdsMap>();
  for (size_t i = 0; i < sparse_var_tables.size(); i++) {
    if (ids_table->find(sparse_var_tables[i]) == ids_table->end()) {
      // create empty set for new sparse var
      ids_table->insert(std::pair<std::string, std::unordered_set<int64_t>>(
          sparse_var_tables[i], std::unordered_set<int64_t>{}));
    }
    auto *var = scope.FindVar(sparse_var_names[i]);
    auto var_tensor = var->Get<framework::LoDTensor>();
    int element_number = var_tensor.numel();
    int *var_mutable_data = var_tensor.mutable_data<int>(var_tensor.place());
    // insert ids which has not been record
    for (size_t j = 0; j < element_number; j++) {
      ids_table->at(sparse_var_tables[i]).insert(var_mutable_data[j]);
      VLOG(4) << "Sparse var " << sparse_var_tables[i] << " insert "
              << var_mutable_data[j];
    }
  }
  need_push_queue_->Push(ids_table);
}

void GeoSgdCommunicator::SendThread() {
  VLOG(0) << "SendThread start!";
  auto before_run_training = GetCurrentUS();

  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
    auto before_run_send_graph = GetCurrentUS();

    if (ids_send_vec_.size() < geo_need_push_nums_) {
      VLOG(4) << "ids_send_vec_ Size: " << ids_send_vec_.size();
      if (need_push_queue_->Size() > 0) {
        ids_send_vec_.push_back(*(need_push_queue_->Pop()));
        VLOG(4) << "ids_send_vec_ pushed";
      }
    }

    if (ids_send_vec_.size() >= geo_need_push_nums_) {
      auto after_run_training = GetCurrentUS();
      VLOG(3) << "run Training use time "
              << after_run_training - before_run_training;
      before_run_training = GetCurrentUS();
      VLOG(3) << "Start send after get need_push_num";

      for (auto &iter : send_varname_to_ctx_) {
        auto &var_name = iter.first;
        auto send_task = [this, &var_name] {
          auto origin_var_name = DeltaVarToVar(var_name);

          if (var_list_[origin_var_name] == true) {
            auto ids_set = SparseIdsMerge(ids_send_vec_, origin_var_name);
            SendUpdateSparseVars(origin_var_name, ids_set);
          } else {
            SendUpdateDenseVars(origin_var_name);
          }
          auto before_send = GetCurrentUS();
          auto send_functor = distributed::ParameterSend<float>();
          auto &ctx = send_varname_to_ctx_.at(var_name);
          send_functor(ctx, *delta_scope_.get(), true, 1);

          auto after_send = GetCurrentUS();
          VLOG(3) << "send " << var_name << " use time "
                  << after_send - before_send;
        };
        task_futures.emplace_back(
            send_threadpool_->enqueue(std::move(send_task)));
      }
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
      have_push_.fetch_add(1, std::memory_order_relaxed);
    }
    auto after_run_send_graph = GetCurrentUS();
    VLOG(4) << "run send graph use time "
            << after_run_send_graph - before_run_send_graph;
    Recv();
  }
}

void GeoSgdCommunicator::Recv() {
  auto push_nums = have_push_.load();
  if (push_nums >= send_varname_to_ctx_.size()) {
    ids_send_vec_.clear();
    RecvAll();
    have_push_.store(0);
  }
}

void GeoSgdCommunicator::RecvAll() {
  if (!running_) return;
  auto before_recv = GetCurrentUS();
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
      auto &var_name = iter.first;
      auto recv_functor = distributed::ParameterRecv<float>();
      auto before_parameter_recv = GetCurrentUS();
      recv_functor(iter.second, *pserver_scope_.get());
      auto after_parameter_recv = GetCurrentUS();
      VLOG(3) << "run parameter recv var " << var_name << " use time "
              << after_parameter_recv - before_parameter_recv;
      RecvUpdateVars(var_name);
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
  for (auto &task : task_futures) {
    task.wait();
  }
  auto after_recv = GetCurrentUS();
  VLOG(3) << "run recv graph use time " << after_recv - before_recv;
}

std::unordered_set<int64_t> GeoSgdCommunicator::SparseIdsMerge(
    const std::vector<SparseIdsMap> &ids_send_vec,
    const std::string &var_name) {
  // every batch has some sparse id, merge them into one unoredered_set
  auto before_run_ids_merge_ = GetCurrentUS();
  std::unordered_set<int64_t> ids_set;
  for (auto ids_map : ids_send_vec) {
    for (auto id : ids_map[var_name]) {
      ids_set.insert(id);
    }
  }
  auto after_run_ids_merge_ = GetCurrentUS();
  VLOG(3) << "run SparseIdsMerge use time "
          << after_run_ids_merge_ - before_run_ids_merge_;
  return ids_set;
}

void GeoSgdCommunicator::SendUpdateDenseVars(const std::string &var_name) {
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
  auto before_run_send_dense = GetCurrentUS();

  auto *var_x = training_scope_->FindVar(var_name);
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

  auto *var_y = old_scope_->FindVar(var_name);
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto dims = var_x_tensor.dims();

  // create temp var for sub
  auto *var_y_sub = old_scope_->Var(VarToDeltaVar(var_name));
  framework::CopyVariable(*var_y, var_y_sub);
  auto var_y_sub_tensor = var_y_sub->Get<framework::LoDTensor>();

  // create delta var in delta scope
  auto *var_z = delta_scope_->Var(VarToDeltaVar(var_name));
  auto *var_z_tensor = var_z->GetMutable<framework::LoDTensor>();
  var_z_tensor->mutable_data<float>(dims, var_x_tensor.place());
  var_z_tensor->set_lod(var_x_tensor.lod());

  math::SetConstant<paddle::platform::CPUDeviceContext, float> constant_functor;
  constant_functor(cpu_ctx, var_z_tensor, static_cast<float>(0));

  // calc sub = var_training - var_old
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  blas.SCAL(var_y_sub_tensor.numel(), -1,
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
  blas.VADD(var_x_tensor.numel(),
            var_x_tensor.mutable_data<float>(var_x_tensor.place()),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
            var_z_tensor->mutable_data<float>(var_z_tensor->place()));

  // calc var_delta = sub / trainer_nums
  float trainer_param = 1.0 / static_cast<float>(trainer_nums_);
  blas.SCAL(var_z_tensor->numel(), trainer_param,
            var_z_tensor->mutable_data<float>(var_z_tensor->place()));

  // calc var_old += var_delta
  blas.VADD(var_y_tensor.numel(),
            var_y_tensor.mutable_data<float>(var_y_tensor.place()),
            var_z_tensor->mutable_data<float>(var_z_tensor->place()),
            var_y_tensor.mutable_data<float>(var_y_tensor.place()));

  auto after_run_send_dense = GetCurrentUS();
  VLOG(3) << "run send update dense var " << var_name << " use time "
          << after_run_send_dense - before_run_send_dense;
}

void GeoSgdCommunicator::SendUpdateSparseVars(
    const std::string &var_name, const std::unordered_set<int64_t> &ids_table) {
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
  auto before_run_send_sparse = GetCurrentUS();

  auto ids_num = ids_table.size();
  VLOG(3) << "Sparse Ids nums is : " << ids_num;
  auto *var_x = training_scope_->FindVar(var_name);
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

  auto *var_y = old_scope_.get()->FindVar(var_name);
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto dims = var_x_tensor.dims();
  auto row_numel = dims[1];

  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

  auto *var_z = delta_scope_->Var(VarToDeltaVar(var_name));
  auto *var_z_select_rows = var_z->GetMutable<framework::SelectedRows>();
  auto *var_z_value = var_z_select_rows->mutable_value();
  var_z_value->Resize({static_cast<int64_t>(ids_num), row_numel});
  auto *z_value = var_z_value->mutable_data<float>(var_x_tensor.place());

  std::vector<int64_t> new_rows;
  new_rows.insert(new_rows.begin(), ids_table.begin(), ids_table.end());
  var_z_select_rows->set_rows(new_rows);
  var_z_select_rows->set_height(new_rows.size());

  // using multi thread speed sparse delta calc
  std::vector<int> buts =
      bucket(new_rows.size(), FLAGS_communicator_merge_sparse_bucket);
  std::vector<std::future<void>> fs;

  for (int x = 0; x < buts.size() - 1; x++) {
    int start = buts[x];
    int end = buts[x + 1];
    float avg = 1 / static_cast<float>(trainer_nums_);

    fs.push_back(
        paddle::framework::Async([&x_value, &y_value, &z_value, &new_rows,
                                  row_numel, start, end, avg]() {
          auto cpu_ctx = paddle::platform::CPUDeviceContext();
          auto blas =
              math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);

          for (int y = start; y < end; y++) {
            auto ids = new_rows[y];

            float *x_val = x_value + ids * row_numel;
            float *y_val = y_value + ids * row_numel;
            float *z_val = z_value + y * row_numel;

            std::vector<float> row_delta(row_numel, 0);
            VSUB<float>(row_numel, x_val, y_val, row_delta.data());
            blas.SCAL(row_numel, avg, row_delta.data());
            blas.VADD(row_numel, row_delta.data(), y_val, y_val);
            blas.VCOPY(row_numel, row_delta.data(), z_val);
          }
        }));
  }
  for (size_t i = 0; i < fs.size(); ++i) {
    fs[i].wait();
  }
  auto after_run_send_sparse = GetCurrentUS();
  VLOG(3) << "run send update sparse var " << var_name << " use time "
          << after_run_send_sparse - before_run_send_sparse;
}

void GeoSgdCommunicator::RecvUpdateVars(const std::string &var_name) {
  // calc var_training += var_pserver - var_old
  // calc var_old = var_pserver
  auto before_run_recv = GetCurrentUS();

  auto *var_x = training_scope_->FindVar(var_name);
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());

  auto *var_y = old_scope_->FindVar(var_name);
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

  if (var_list_[var_name] == true) {
    // sparse param
    auto *var_z = pserver_scope_.get()->FindVar(var_name);
    auto var_z_slr = var_z->GetMutable<framework::SelectedRows>();
    auto &new_rows = var_z_slr->rows();
    auto *new_value = var_z_slr->mutable_value();
    auto row_numel = new_value->numel() / new_rows.size();
    auto *z_value = new_value->mutable_data<float>(var_x_tensor.place());

    std::vector<int> buts =
        bucket(new_rows.size(), FLAGS_communicator_merge_sparse_bucket);
    std::vector<std::future<void>> fs;

    for (int x = 0; x < buts.size() - 1; x++) {
      int start = buts[x];
      int end = buts[x + 1];

      fs.push_back(paddle::framework::Async(
          [&x_value, &y_value, &z_value, &new_rows, row_numel, start, end]() {
            auto cpu_ctx = paddle::platform::CPUDeviceContext();
            auto blas =
                math::GetBlas<paddle::platform::CPUDeviceContext, float>(
                    cpu_ctx);

            for (int y = start; y < end; y++) {
              std::vector<float> row_delta(row_numel, 0);

              auto ids = new_rows[y];

              float *x_val = x_value + ids * row_numel;
              float *y_val = y_value + ids * row_numel;
              float *z_val = z_value + y * row_numel;

              VSUB(row_numel, z_val, y_val, row_delta.data());
              blas.VADD(row_numel, row_delta.data(), x_val, x_val);
              blas.VCOPY(row_numel, z_val, y_val);
            }
          }));
    }
    for (size_t i = 0; i < fs.size(); ++i) {
      fs[i].wait();
    }
  } else {
    // dense param
    auto *var_y_sub = old_scope_->Var(VarToDeltaVar(var_name));
    framework::CopyVariable(*var_y, var_y_sub);
    auto var_y_sub_tensor = var_y_sub->Get<framework::LoDTensor>();

    auto *var_z = pserver_scope_.get()->FindVar(var_name);
    auto var_z_tensor = var_z->Get<framework::LoDTensor>();

    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    auto blas =
        math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
    // calc sub = pserver - old
    blas.SCAL(var_y_sub_tensor.numel(), -1,
              var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
    blas.VADD(var_y_tensor.numel(),
              var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
              var_z_tensor.mutable_data<float>(var_z_tensor.place()),
              var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
    // calc recv += sub
    blas.VADD(var_x_tensor.numel(),
              var_x_tensor.mutable_data<float>(var_x_tensor.place()),
              var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
              var_x_tensor.mutable_data<float>(var_x_tensor.place()));
    // calc old = pserver
    framework::CopyVariable(*var_z, var_y);
  }

  auto after_run_recv = GetCurrentUS();
  VLOG(3) << "run recv update var " << var_name << " use time "
          << after_run_recv - before_run_recv;
}

void GeoSgdCommunicator::GeoSgdSparseParamInit(framework::Scope *scope_x,
                                               framework::Scope *scope_y,
                                               const std::string var_name) {
  // create selectedrows var from lodtensor var info
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);

  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
  auto *var_y_select_rows = var_y->GetMutable<framework::SelectedRows>();

  auto dims = var_x_tensor.dims();
  auto rows = dims[0];
  auto row_numel = dims[1];

  var_y_select_rows->set_height(rows);
  std::vector<int64_t> new_rows{};
  var_y_select_rows->set_rows(new_rows);
  auto *var_y_value = var_y_select_rows->mutable_value();
  var_y_value->Resize({rows, row_numel});
  var_y_value->mutable_data<float>(var_x_tensor.place());
}

void GeoSgdCommunicator::GeoSgdDenseParamInit(framework::Scope *scope_x,
                                              framework::Scope *scope_y,
                                              const std::string var_name) {
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);
  framework::CopyVariable(*var_x, var_y);
}

void GeoSgdCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                  const RpcCtxMap &recv_varname_to_ctx,
                                  Scope *recv_scope) {}

void GeoSgdCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                  Scope *recv_scope) {}

Q
Qiao Longfei 已提交
903 904 905
}  // namespace distributed
}  // namespace operators
}  // namespace paddle